Slow fusion of liposomes composed of membrane-spanning lipids

被引:18
|
作者
Elferink, MGL
vanBreemen, J
Konings, WN
Driessen, AJM
Wilschut, J
机构
[1] UNIV GRONINGEN, DEPT MICROBIOL, NL-9751 NN HAREN, NETHERLANDS
[2] UNIV GRONINGEN, GRONINGEN BIOMOL SCI & BIOTECHNOL INST, NL-9751 NN HAREN, NETHERLANDS
[3] UNIV GRONINGEN, DEPT STRUCT ELECTRONMICROSCOPY, NL-9747 AG GRONINGEN, NETHERLANDS
[4] UNIV GRONINGEN, DEPT PHYSIOL CHEM, NL-9713 AV GRONINGEN, NETHERLANDS
[5] UNIV GRONINGEN, GRONINGEN UTRECHT INST DRUG EXPLORAT, NL-9713 AV GRONINGEN, NETHERLANDS
关键词
slow fusion; liposomes; membrane-spanning lipids;
D O I
10.1016/S0009-3084(97)00044-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The fusion characteristics of large unilamellar liposomes composed of bipolar tetraether lipids extracted from the thermophilic archaeon Sulfolobus acidocaldarius, was investigated. These lipids span the entire membrane and form single monolayer liposomes in aqueous media [Elferink, M.G.L., de Wit, J.G., Demel, R., Driessen, A.J.M. and Konings, W.N., (1992) J. Biol. Chem. 267, 1375-1381]. In the presence of calcium-phosphate, slow mixing of the aqueous liposome contents and membrane lipids occurred, demonstrating that these liposomes are fusion-competent. The fusion process was essentially nonleaky. The rate of fusion increased with the pH and the concentration of calcium and phosphate. Fusion resulted in an increase of the size of the liposomes. These data demonstrate that a monolayer organization of lipids in a membrane does not per se interfere with membrane fusion competence. (C) 1997 Elsevier Science Ireland Ltd.
引用
收藏
页码:37 / 43
页数:7
相关论文
共 50 条
  • [21] PREDICTING THE ORIENTATION OF EUKARYOTIC MEMBRANE-SPANNING PROTEINS
    HARTMANN, E
    RAPOPORT, TA
    LODISH, HF
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (15) : 5786 - 5790
  • [22] Surface Properties and Membrane Packing in Hybrid Liposomes Composed of Tetraether and Diester Lipids
    Ayesa, Umme
    Chong, Parkson
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 81A - 81A
  • [23] SHAPE ESTIMATION OF MEMBRANE-SPANNING PROTEINS BY FLUORESCENCE TECHNIQUES
    AMLER, E
    KOTYK, A
    STUDIA BIOPHYSICA, 1988, 127 (1-3): : 173 - 182
  • [24] Design, assembly, and characterization of membrane-spanning DNA nanopores
    Lanphere, Conor
    Offenbartl-Stiegert, Daniel
    Dorey, Adam
    Pugh, Genevieve
    Georgiou, Elena
    Xing, Yongzheng
    Burns, Jonathan R.
    Howorka, Stefan
    NATURE PROTOCOLS, 2021, 16 (01) : 86 - 130
  • [25] Interaction and conformational dynamics of membrane-spanning protein helices
    Langosch, Dieter
    Arkin, Isaiah T.
    PROTEIN SCIENCE, 2009, 18 (07) : 1343 - 1358
  • [26] IMPROVED HPLC METHOD FOR PURIFICATION OF MEMBRANE-SPANNING POLYPEPTIDES
    JENNINGS, ML
    BIOPHYSICAL JOURNAL, 1994, 66 (02) : A280 - A280
  • [27] Relating structure and function of viral membrane-spanning miniproteins
    Opella, Stanley J.
    CURRENT OPINION IN VIROLOGY, 2015, 12 : 121 - 125
  • [28] Evaluation of the membrane-spanning domain of CIC-2
    Ramjeesingh, Mohabir
    Li, Canhui
    She, Yi-Min
    Bear, Christine E.
    BIOCHEMICAL JOURNAL, 2006, 396 (03) : 449 - 460
  • [29] Design, assembly, and characterization of membrane-spanning DNA nanopores
    Conor Lanphere
    Daniel Offenbartl-Stiegert
    Adam Dorey
    Genevieve Pugh
    Elena Georgiou
    Yongzheng Xing
    Jonathan R. Burns
    Stefan Howorka
    Nature Protocols, 2021, 16 : 86 - 130
  • [30] Model for coupled insertion and folding of membrane-spanning proteins
    Hausrath, Andrew C.
    PHYSICAL REVIEW E, 2014, 90 (02):