Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry

被引:25
|
作者
Griggs, J. A. [1 ]
Bamber, J. L. [1 ]
机构
[1] Univ Bristol, Sch Geog Sci, Bristol Glaciol Ctr, Bristol BS8 1SS, Avon, England
关键词
MASS-BALANCE; RADAR INTERFEROMETRY; WEST ANTARCTICA; CLIMATE; SHEETS; CONTINENT; GREENLAND; ACCURACY; COLLAPSE; GLACIER;
D O I
10.1029/2009GL039527
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Satellite radar altimetry can be used to infer the thickness of floating ice shelves around Antarctica under the assumption of hydrostatic equilibrium. Ice shelf thickness is an essential parameter in mass budget calculations and is one of the more poorly characterised. Using data from the ERS-1 radar altimeter recorded in 1994-5, we calculate the thickness of Larsen C ice shelf on the Antarctic Peninsula. The surface elevation was determined to an accuracy of -2.3 +/- 4.35 m as compared to elevations from the laser altimeter onboard ICESat. Using a model for firn depth and density, we created a 1 km grid of ice shelf thickness for Larsen C. The accuracy of the ice thickness retrieval was determined from independent airborne radio echo sounding data. The results indicated a bias of -0.22 m and random error of 36.7 m, which is equivalent to 12.7% of the mean thickness for this ice shelf. Citation: Griggs, J. A., and J. L. Bamber (2009), Ice shelf thickness over Larsen C, Antarctica, derived from satellite altimetry, Geophys. Res. Lett., 36, L19501, doi: 10.1029/2009GL039527.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Summertime cloud phase strongly influences surface melting on the Larsen C ice shelf, Antarctica
    Gilbert, E.
    Orr, A.
    King, J. C.
    Renfrew, I. A.
    Lachlan-Cope, T.
    Field, P. F.
    Boutle, I. A.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (729) : 1575 - 1589
  • [32] The influence of fohn winds on annual and seasonal surface melt on the Larsen C Ice Shelf, Antarctica
    Turton, Jenny, V
    Kirchgaessner, Amelie
    Ross, Andrew N.
    King, John C.
    Munneke, Peter Kuipers
    CRYOSPHERE, 2020, 14 (11): : 4165 - 4180
  • [33] Northern Larsen Ice Shelf, Antarctica: further retreat after collapse
    Rott, H
    Rack, W
    Skvarca, P
    De Angelis, H
    ANNALS OF GLACIOLOGY, VOL 34, 2002, 2002, 34 : 277 - 282
  • [34] Satellite altimetry detection of ice-shelf-influenced fast ice
    Brett, Gemma M.
    Price, Daniel
    Rack, Wolfgang
    Langhorne, Patricia J.
    CRYOSPHERE, 2021, 15 (08): : 4099 - 4115
  • [35] Airborne thickness and freeboard measurements over the McMurdo Ice Shelf, Antarctica, and implications for ice density
    Rack, Wolfgang
    Haas, Christian
    Langhorne, Pat J.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (11) : 5899 - 5907
  • [36] Ice sheet topography derived from satellite altimetry.
    Rémy, F
    Testut, L
    Legresy, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE A-SCIENCES DE LA TERRE ET DES PLANETES, 2000, 330 (07): : 457 - 467
  • [37] History of the Larsen C Ice Shelf reconstructed from sub-ice shelf and offshore sediments
    Smith, J. A.
    Hillenbrand, C. -d.
    Subt, C.
    Rosenheim, B. E.
    Frederichs, T.
    Ehrmann, W.
    Andersen, T. J.
    Wacker, L.
    Makinson, K.
    Anker, P.
    Venables, E. J.
    Nicholls, K. W.
    GEOLOGY, 2021, 49 (08) : 978 - 982
  • [38] Ice loss processes in the Seal Nunataks ice shelf region from satellite altimetry and imagery
    Shuman, Christopher
    Scambos, Ted
    Berthier, Etienne
    ANNALS OF GLACIOLOGY, 2016, 57 (73) : 94 - 104
  • [39] Antarctic ice shelf thickness from CryoSat-2 radar altimetry
    Chuter, S. J.
    Bamber, J. L.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (24) : 10721 - 10729
  • [40] Changes in ice-shelf buttressing following the collapse of Larsen A Ice Shelf, Antarctica, and the resulting impact on tributaries
    Royston, Sam
    Gudmundsson, G. Hilmar
    JOURNAL OF GLACIOLOGY, 2016, 62 (235) : 905 - 911