EFFICIENT GENERATION OF 3D SURFEL MAPS USING RGB-D SENSORS

被引:6
|
作者
Wilkowski, Artur [1 ]
Kornuta, Tomasz [2 ]
Stefanczyk, Maciej [2 ]
Kasprzak, Wlodzimierz [2 ]
机构
[1] Ind Res Inst Automat & Measurements, Al Jerozolimskie 202, Warsaw, Poland
[2] Warsaw Univ Technol, Inst Control & Computat Engn, Ul Nowowiejska 15-19, PL-00665 Warsaw, Poland
关键词
RGB-D; V-SLAM; surfel map; frustum culling; octree; POINT; REGISTRATION; COLOR;
D O I
10.1515/amcs-2016-0007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The article focuses on the problem of building dense 3D occupancy maps using commercial RGB-D sensors and the SLAM approach. In particular, it addresses the problem of 3D map representations, which must be able both to store millions of points and to offer efficient update mechanisms. The proposed solution consists of two such key elements, visual odometry and surfel-based mapping, but it contains substantial improvements: storing the surfel maps in octree form and utilizing a frustum culling-based method to accelerate the map update step. The performed experiments verify the usefulness and efficiency of the developed system.
引用
收藏
页码:99 / 122
页数:24
相关论文
共 50 条
  • [41] Using GNG on 3D Object Recognition in Noisy RGB-D data
    Rangel, Jose Carlos
    Morell, Vicente
    Cazorla, Miguel
    Orts-Escolano, Sergio
    Garcia-Rodriguez, Jose
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [42] RGB-D Fusion Enhancement by Mode Filter for Surfel Cloud Segmentation
    Monica, Riccardo
    Zillich, Michael
    Vincze, Markus
    Aleotti, Jacopo
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 6490 - 6497
  • [43] Pinpoint SLAM: A Hybrid of 2D and 3D Simultaneous Localization and Mapping for RGB-D Sensors
    Ataer-Cansizoglu, Esra
    Taguchi, Yuichi
    Ramalingam, Srikumar
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 1300 - 1307
  • [44] Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance
    Chavez-Aragon, Alberto
    Macknojia, Rizwan
    Payeur, Pierre
    Laganiere, Robert
    JOURNAL OF SENSORS, 2013, 2013
  • [45] State of the Art on 3D Reconstruction with RGB-D Cameras
    Zollhoefer, Michael
    Stotko, Patrick
    Goerlitz, Andreas
    Theobalt, Christian
    Niessner, Matthias
    Klein, Reinhard
    Kolb, Andreas
    COMPUTER GRAPHICS FORUM, 2018, 37 (02) : 625 - 652
  • [46] Texture Mapping for 3D Reconstruction with RGB-D Sensor
    Fu, Yanping
    Yan, Qingan
    Yang, Long
    Liao, Jie
    Xiao, Chunxia
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4645 - 4653
  • [47] InpaintFusion: Incremental RGB-D Inpainting for 3D Scenes
    Mori, Shohei
    Erat, Okan
    Broll, Wolfgang
    Saito, Hideo
    Schmalstieg, Dieter
    Kalkofen, Denis
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (10) : 2994 - 3007
  • [48] Extended GrabCut for 3D and RGB-D Point Clouds
    Sallem, Nizar K.
    Devy, Michel
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2013, 2013, 8192 : 354 - 365
  • [49] Basic 3D Solid Recognition in RGB-D Images
    Kornuta, Tomasz
    Stefanczyk, Maciej
    Kasprzak, Wlodzimierz
    RECENT ADVANCES IN AUTOMATION, ROBOTICS AND MEASURING TECHNIQUES, 2014, 267 : 421 - 430
  • [50] Efficient Dense 3D Rigid-Body Motion Segmentation in RGB-D Video
    Stueckler, Joerg
    Behnke, Sven
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,