Nanomechanical surface characterization by atomic force acoustic microscopy

被引:45
|
作者
Rabe, U
Scherer, V
Hirsekorn, S
Arnold, W
机构
[1] Fraunhofer Inst. for Nondestr. Test., University
来源
关键词
D O I
10.1116/1.589484
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We constructed an atomic force acoustic microscope that enables one to detect out-of-plane and in-plane sample surface vibrations in a wide frequency range from about 100 kHz to several MHz. From the point of view of acoustics, an AFM cantilever is a miniaturized elastic beam that can vibrate in different types of modes as, for example, flexural, torsional, and extensional. We present a method of how to calculate the vibrational behavior of a cantilever with its sensor tip in contact with or near a sample surface, and how to deduce surface properties like the Young's modulus from the vibrations induced in the cantilever. Further, we present single-point measurements in which we compare ultrasonic cantilever vibration spectra where the tip is in contact with surface areas with different stiffnesses to force calibration curves. Finally, we present ultrasonic images taken with our microscope. (C) 1997 American Vacuum Society.
引用
收藏
页码:1506 / 1511
页数:6
相关论文
共 50 条
  • [31] Characterization of thin oxide layers by use of the atomic force acoustic microscopy
    Striegler, Andre
    Kopycinska-Mueller, Malgorzata
    Koehler, Bernd
    Wolter, Klaus-Juergen
    Meyendorf, Norbert
    [J]. 2008 31ST INTERNATIONAL SPRING SEMINAR ON ELECTRONICS TECHNOLOGY: RELIABILITY AND LIFE-TIME PREDICTION, 2008, : 167 - +
  • [32] Mechanical Characterization of Thin Films by Use of Atomic Force Acoustic Microscopy
    Kopycinska-Mueller, Malgorzata
    Striegler, Andre
    Koehler, Bernd
    Wolter, Klaus-Juergen
    [J]. ADVANCED ENGINEERING MATERIALS, 2011, 13 (04) : 312 - 318
  • [33] Atomic force microscopy as a nanomechanical tool for cancer liquid biopsy
    Li, Mi
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 734
  • [34] Nanomechanical cutting of boron nitride nanotubes by atomic force microscopy
    Zheng, Meng
    Chen, Xiaoming
    Park, Cheol
    Fay, Catharine C.
    Pugno, Nicola M.
    Ke, Changhong
    [J]. NANOTECHNOLOGY, 2013, 24 (50)
  • [35] Evaluation of Nanomechanical Properties of Tomato Root by Atomic Force Microscopy
    Nicolas-Alvarez, D. E.
    Andraca-Adame, J. A.
    Chanona-Perez, J. J.
    Mendez-Mendez, J., V
    Cardenas-Perez, S.
    Rodriguez-Pulido, A.
    [J]. MICROSCOPY AND MICROANALYSIS, 2019, 25 (04) : 989 - 997
  • [36] Measurement of nanomechanical properties of biomolecules using atomic force microscopy
    Kurland, Nicholas E.
    Drira, Zouheir
    Yadavalli, Vamsi K.
    [J]. MICRON, 2012, 43 (2-3) : 116 - 128
  • [37] Nanomechanical properties of potato flakes using atomic force microscopy
    Al-Rekabi, Zeinab
    Davies, Suzanne L.
    Clifford, Charles A.
    [J]. JOURNAL OF FOOD ENGINEERING, 2021, 307 (307)
  • [38] Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae
    Arfsten, Judith
    Leupold, Stefan
    Bradtmoeller, Christian
    Kampen, Ingo
    Kwade, Arno
    [J]. COLLOIDS AND SURFACES B-BIOINTERFACES, 2010, 79 (01) : 284 - 290
  • [39] Nanomechanical and Viscoelastic Measurements in Biological Atomic Force Microscopy (AFM)
    Hohlbauch, Sophia
    [J]. BIOPHYSICAL JOURNAL, 2016, 110 (03) : 498A - 499A
  • [40] Pulsed contact resonance for atomic force microscopy nanomechanical measurements
    Killgore, Jason P.
    Hurley, Donna C.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (05)