Uncovering spatio-temporal patterns in environmental data

被引:3
|
作者
Wachowicz, M [1 ]
机构
[1] Wageningen UR, Ctr Geoinformat, Wageningen, Netherlands
关键词
data mining; geographic visualization; knowledge construction process;
D O I
10.1023/A:1022259531710
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The integration of data mining and geographic visualization techniques facilitates the identification and the interpretation of spatio-temporal patterns - a process recognized as knowledge construction. Knowledge construction is a dynamic process of manipulating 'data' to find, relate, and interpret interesting patterns in large environmental data sets. Toward this end, an overview of the main methods associated with the expanding fields of Knowledge Discovery in Databases (KDD) and Geographic Visualization (GeoVis) is provided. The paper explains how different methods can be combined in order to design a knowledge construction process for the identification and interpretation of the space-time variability of both composition and structure of a pattern. Case studies, tools and prototype implementations are described for illustrating how both KDD and GeoVis methods can be applied to uncovering spatio-temporal patterns. Finally, the specific underlying research issues are described, with particular emphasis on how these relate to the environmental sciences domain.
引用
收藏
页码:469 / 487
页数:19
相关论文
共 50 条
  • [1] Uncovering Spatio-Temporal Patterns in Environmental Data
    Monica Wachowicz
    [J]. Water Resources Management, 2002, 16 : 469 - 487
  • [2] Uncovering Spatio-Temporal Cluster Patterns Using Massive Floating Car Data
    Liu, Xintao
    Ban, Yifang
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2013, 2 (02): : 371 - 384
  • [3] Design and evaluation of a geovisual analytics system for uncovering patterns in spatio-temporal event data
    Robinson, Anthony C.
    Peuquet, Donna J.
    Pezanowski, Scott
    Hardisty, Franklin A.
    Swedberg, Brian
    [J]. CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 2017, 44 (03) : 216 - 228
  • [4] Modelling spatio-temporal environmental data
    Rasinmäki, J
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2003, 18 (10) : 877 - 886
  • [5] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [6] Mining Spatio-Temporal Patterns in Trajectory Data
    Kang, Juyoung
    Yong, Hwan-Seung
    [J]. JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2010, 6 (04): : 521 - 536
  • [7] Spatio-temporal patterns of satellite images for environmental analysis
    Seixas, J
    [J]. GEOGRAPHICAL INFORMATION '97: FROM RESEARCH TO APPLICATION THROUGH COOPERATION, VOLS 1 AND 2, 1997, : 475 - 486
  • [8] Smoothing spatio-temporal data with complex missing data patterns
    Arnone, Eleonora
    Sangalli, Laura M.
    Vicini, Andrea
    [J]. STATISTICAL MODELLING, 2023, 23 (04) : 327 - 356
  • [9] How can knowledge discovery methods uncover spatio-temporal patterns in environmental data?
    Wachowicz, M
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY II, 2000, 4057 : 221 - 229
  • [10] Spatio-temporal patterns revealed in denoised fMRI data
    Ogawa, S
    Mitra, PP
    Hu, X
    Ugurbil, K
    [J]. VISUALIZATION OF INFORMATION PROCESSING IN THE HUMAN BRAIN: RECENT ADVANCES IN MEG AND FUNCTIONAL MRI, 1996, (47): : 5 - 14