Prediction of Volleyball Competition Using Machine Learning and Edge Intelligence

被引:7
|
作者
Liu, Qiang [1 ]
Liu, Qiannan [1 ]
机构
[1] Woosuk Univ, Grad Sch, Wonju, South Korea
关键词
USER;
D O I
10.1155/2021/5595833
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data analysis and machine learning are the backbones of the current era. Human society has entered machine learning and data science that increases the data capacity. It has been widely acknowledged that not only does the number of information increase exponentially, but also the way of human information management and processing is completed to be changed from manual to computer, mainly depending on the transformation of information technology including a computer, network, and communication. This paper is aimed at a solution to the lag of the methods and means of volleyball technique prediction in China. Through field visits, it is found that the way of analysis and research of techniques and tactics in Chinese volleyball practice is relatively backward, which to a certain extent affected the rapid development of Chinese volleyball. Therefore, it is a necessary and urgent task to realize the reform of the methods and means of volleyball technical and tactical analysis in China. The data analysis and prediction are based on the machine learning and data mining algorithm applied to volleyball in this paper is an inevitable trend. The proposed model is applied to the data produced at the edges of the systems and thoroughly analyzed. The Apriori algorithm of the machine learning algorithm is utilized to process the data and provide a prediction about the strategies of a volleyball match. The Apriori algorithm of machine learning is also optimized to perform better data analysis. The effectiveness of the proposed model is also highlighted.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Potable Water Quality Prediction Using Artificial Intelligence and Machine Learning Algorithms for Better Sustainability
    Yurtsever, Mustafa
    Emec, Murat
    EGE ACADEMIC REVIEW, 2023, 23 (02) : 265 - 278
  • [42] A decision support system for osteoporosis risk prediction using machine learning and explainable artificial intelligence
    Khanna, Varada Vivek
    Chadaga, Krishnaraj
    Sampathila, Niranjana
    Chadaga, Rajagopala
    Prabhu, Srikanth
    Swathi, K. S.
    Jagdale, Aditya S.
    Bhat, Devadas
    HELIYON, 2023, 9 (12)
  • [43] Prediction of disease comorbidity using explainable artificial intelligence and machine learning techniques: A systematic review
    Alsaleh, Mohanad M.
    Allery, Freya
    Choi, Jung Won
    Hama, Tuankasfee
    McQuillin, Andrew
    Wu, Honghan
    Thygesen, Johan H.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 175
  • [44] Disease Prediction using Machine Learning
    Dubey, Subham
    Banik, Sreerupa
    Ghosh, Deba
    Dey, Akash
    Das, Rishabh
    Dey, Ipsita
    Chowdhury, Sagarika
    Dey, Prianka
    2024 2nd World Conference on Communication and Computing, WCONF 2024, 2024,
  • [45] Gentrification Prediction Using Machine Learning
    Alejandro, Yesenia
    Palafox, Leon
    ADVANCES IN SOFT COMPUTING, MICAI 2019, 2019, 11835 : 187 - 199
  • [46] Diabetes Prediction Using Machine Learning
    Tian, Stephanie
    Hui, Guanghui
    PROCEEDINGS OF THE 2024 9TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2024, 2024, : 16 - 20
  • [47] RCA Prediction using Machine Learning
    Lalwani, Hiro
    Gupta, Rachit
    Srivastava, Sandeep
    Jayaram, Sahana
    2019 5TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE 2019), 2019,
  • [48] Recruitment Prediction using Machine Learning
    Reddy, Jagan Mohan D.
    Regella, Sirisha
    Seelam, Srinivasa Reddy
    PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020), 2020,
  • [49] Crime Prediction Using Machine Learning
    Ling, Hneah Guey
    Jian, Teng Wei
    Mohanan, Vasuky
    Yeo, Sook Fern
    Jothi, Neesha
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024, 2024, 1035 : 92 - 103
  • [50] Pandemia Prediction Using Machine Learning
    Nasir, Amir
    Makki, Seyed Vahab AL-Din
    Al-Sabbagh, Ali
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (05): : 211 - 214