Bayesian nonparametric nonhomogeneous Poisson process with applications to USGS earthquake data

被引:10
|
作者
Geng, Junxian [1 ]
Shi, Wei [2 ]
Hu, Guanyu [3 ]
机构
[1] Boehringer Ingelheim Pharmaceut Inc, 900 Ridgebury Rd, Ridgefield, CT 06877 USA
[2] Univ Connecticut, Dept Stat, Room 323,Philip E Austin Bldg Univ Connecticut 21, Storrs, CT 06269 USA
[3] Univ Missouri, Dept Stat, 146 Middlebush Hall, Columbia, MO 65211 USA
关键词
Intensity clustering; MCMC; Mixture of finite mixture; USGS earthquake data;
D O I
10.1016/j.spasta.2021.100495
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Intensity estimation is a common problem in statistical analysis of spatial point pattern data. This paper proposes a nonparametric Bayesian method for estimating the spatial point process intensity based on mixture of finite mixture (MFM) model. MFM approach leads to a consistent and simultaneous estimate of the intensity surface of spatial point pattern and the clustering information (number of clusters and the clustering configurations) of subareas of the intensity surface. An efficient Markov chain Monte Carlo (MCMC) algorithm is proposed for our method, where it performs a marginalization over the number of clusters which avoids complicated reversible jump MCMC or allocation samplers. Extensive simulation studies are carried out to examine empirical performance of the proposed method. The usage of our proposed method is further illustrated with the analysis of the Earthquake Hazards Program of United States Geological Survey (USGS) earthquake data. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Bayesian regression analysis of panel count data under frailty nonhomogeneous Poisson process model with an unknown frailty distribution
    Wang, Lu
    Wang, Chunling
    Lin, Xiaoyan
    Wang, Lianming
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3687 - 3705
  • [22] Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process
    Ding, Mingtao
    He, Lihan
    Dunson, David
    Carin, Lawrence
    BAYESIAN ANALYSIS, 2012, 7 (04): : 813 - 840
  • [23] Bayesian Nonparametric Poisson-Process Allocation for Time-Sequence Modeling
    Ding, Hongyi
    Khand, Mohammad Emtiyaz
    Sato, Issei
    Sugiyama, Masashi
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [24] A nonhomogeneous Poisson process geostatistical model
    Castro Morales, Fidel Ernesto
    Vicini, Lorena
    Hotta, Luiz K.
    Achcar, Jorge A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (02) : 493 - 507
  • [25] A nonhomogeneous Poisson process geostatistical model
    Fidel Ernesto Castro Morales
    Lorena Vicini
    Luiz K. Hotta
    Jorge A. Achcar
    Stochastic Environmental Research and Risk Assessment, 2017, 31 : 493 - 507
  • [26] CHARACTERISTIC FUNCTIONAL OF A NONHOMOGENEOUS POISSON PROCESS
    SCOTT, M
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (10): : 1164 - &
  • [27] Bayesian computation for nonhomogeneous Poisson processes in software reliability
    Kuo, L
    Yang, TY
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) : 763 - 773
  • [28] Bayesian nonparametric inference for mixed Poisson processes
    Gutiérrez-Peña, E
    Nieto-Barajas, LE
    BAYESIAN STATISTICS 7, 2003, : 163 - 179
  • [29] Bayesian Nonparametric Poisson Factorization for Recommendation Systems
    Gopalan, Prem
    Ruiz, Francisco J. R.
    Ranganath, Rajesh
    Blei, David M.
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 275 - 283
  • [30] Research and applications for aero-spares demand by using nonhomogeneous Poisson process
    Chen, Feng-Teng
    Zuo, Hong-Fu
    Wang, Hua-Wei
    Ni, Xian-Cun
    Bai, Fang
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2007, 29 (09): : 1585 - 1588