Ensemble Churn Prediction for Internet Service Provider with Machine Learning Techniques

被引:0
|
作者
Goy, Gokhan [1 ]
Kolukisa, Burak [1 ]
Bahcevan, Cenk [2 ]
Gungor, Vehbi Cagri [1 ]
机构
[1] Abdullah Gul Univ, Muhendislik Fak, Bilgisayar Muhendisligi, Kayseri, Turkey
[2] TrukNet Iletisim Hizmetleri, Istanbul, Turkey
关键词
Churn Prediction; Binary Classification; Data Mining; Machine Learning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the developing technology in every fields, a competitive marketing environment has been arised In this competitive environment analyzing customer behavior has become vital In particular, the ability to easily change any service provider has become vet) , critical for the company to continue its existence At the same time, the amount of financial resources spent on retaining instituters much less than to obtain new clients. In this context, the traditional methods of examining vast amount of data obtained today for establishing decision support systems have lost their validities In this study. we used a dataset which is provided by TurkNet serving as an internet service provider in Turkey. Various preprocessing steps has performed on this dataset and then classification algorithms ran. Afterwards results have obtained and compared. The results of these experiments analyzed in terms of the area under the curve value In this context the aunt successful classifier algorithm has been determined as the Random Trees algorithm with a value of 0.936.
引用
收藏
页码:248 / 253
页数:6
相关论文
共 50 条
  • [21] Research on telecom customer churn prediction based on ensemble learning
    Liu, Yajun
    Fan, Jingjing
    Zhang, Jianfang
    Yin, Xinxin
    Song, Zehua
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2023, 60 (03) : 759 - 775
  • [22] A Comparative Assessment of the Performance of Ensemble Learning in Customer Churn Prediction
    Abbasimehr, Hossein
    Setak, Mostafa
    Tarokh, Mohammad
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2014, 11 (06) : 599 - 606
  • [23] Research on telecom customer churn prediction based on ensemble learning
    Yajun Liu
    Jingjing Fan
    Jianfang Zhang
    Xinxin Yin
    Zehua Song
    Journal of Intelligent Information Systems, 2023, 60 : 759 - 775
  • [24] Enhanced slope stability prediction using ensemble machine learning techniques
    Devendra Kumar Yadav
    Swarup Chattopadhyay
    Debi Prasad Tripathy
    Pragyan Mishra
    Pritiranjan Singh
    Scientific Reports, 15 (1)
  • [25] Performance prediction of impact hammer using ensemble machine learning techniques
    Ocak, Ibrahim
    Seker, Sadi Evren
    Rostami, Jamal
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2018, 80 : 269 - 276
  • [26] Enhancing groundwater quality prediction through ensemble machine learning techniques
    Karimi, Hadi
    Sahour, Soheil
    Khanbeyki, Matin
    Gholami, Vahid
    Sahour, Hossein
    Shahabi-Ghahfarokhi, Sina
    Mohammadi, Mohsen
    Environmental Monitoring and Assessment, 2025, 197 (01)
  • [27] Improved prediction of software defects using ensemble machine learning techniques
    Sweta Mehta
    K. Sridhar Patnaik
    Neural Computing and Applications, 2021, 33 : 10551 - 10562
  • [28] Improved prediction of software defects using ensemble machine learning techniques
    Mehta, Sweta
    Patnaik, K. Sridhar
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (16): : 10551 - 10562
  • [29] Churn prediction in telecommunication sector with machine learning methods
    Senyurek, Ayse
    Alp, Selcuk
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2023, 15 (02) : 184 - 202
  • [30] Customer churn prediction system: a machine learning approach
    Praveen Lalwani
    Manas Kumar Mishra
    Jasroop Singh Chadha
    Pratyush Sethi
    Computing, 2022, 104 : 271 - 294