Investigation into different numerical methods in predicting the response of aluminosilicate glass under quasi-static and impact loading conditions

被引:35
|
作者
Wang, Zhen [1 ,2 ]
Ma, Dayou [1 ]
Suo, Tao [2 ]
Li, Yulong [2 ]
Manes, Andrea [1 ]
机构
[1] Politecn Milan, Dept Mech Engn, I-20156 Milan, Italy
[2] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Aluminosilicate glass; B rittle fracture; FEM-SPH; DEM; Peridynamics; HIGH-VELOCITY IMPACT; CRACK-PROPAGATION; BRITTLE-FRACTURE; ELEMENT-METHOD; SPH; SIMULATION; FAILURE; MODEL; CONCRETE; DEFORMATION;
D O I
10.1016/j.ijmecsci.2021.106286
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a comparison of three numerical approaches for modeling brittle materials in both quasi-static and dynamic loading conditions. These methods include the Finite Element Method coupled to Smooth Particle Hydrodynamics (FEM-SPH), Discrete Element Method (DEM) and the elastic bond-based Peridynamics (PD). Numerical models for each method were built in the commercial software LS-DYNA. The parameters, associated to the mechanical behavior of aluminosilicate glass, were calibrated for each numerical model by means of experimental tests on material coupons. The experimental results from quasi-static three-point bending tests and ballistic impact tests were utilized for numerical models' assessment. All methods provide comparable results under quasi-static flexural loading condition and for ballistic impact cases, the numerical results show the particular capability of each approach to capture the projectile residual velocity and the damage morphology of aluminosilicate glass files. However, considering all the loading conditions the FEM-SPH method replicates the mechanical response of aluminosilicate glass best.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Investigation of mechanical behavior of energy absorbers in expansion and folding modes under axial quasi-static loading in both experimental and numerical methods
    Chahardoli, S.
    Nia, A. Alavi
    THIN-WALLED STRUCTURES, 2017, 120 : 319 - 332
  • [32] Hybrid composites made of carbon and glass woven fabrics under quasi-static loading
    Pandya, Kedar S.
    Veerraju, Ch.
    Naik, N. K.
    MATERIALS & DESIGN, 2011, 32 (07): : 4094 - 4099
  • [33] A critical analysis of plane shear tests under quasi-static and impact loading
    Shi, F. F.
    Merle, R.
    Hou, B.
    Liu, J. G.
    Li, Y. L.
    Zhao, H.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2014, 74 : 107 - 119
  • [34] Modeling of macroscopic response of phase transforming materials under quasi-static loading
    Virginia Polytechnic Inst and State, Univ, Blacksburg, United States
    J Elast, 2 (145-160):
  • [35] Constitutive modeling and simulation of polyethylene foam under quasi-static and impact loading
    Fu, Zhiqiang
    Zhang, Wujie
    Zhao, Tong
    Wang, Yan
    Duan, Liying
    Liu, Haozhe
    JOURNAL OF CELLULAR PLASTICS, 2024, 60 (01) : 59 - 78
  • [36] The response of self-centering concrete walls under quasi-static loading
    Abouzar Jafari
    Habib Akbarzadeh Bengar
    Reza Hassanli
    Maryam Nazari
    Roberto Dugnani
    Bulletin of Earthquake Engineering, 2021, 19 : 2893 - 2917
  • [37] The response of self-centering concrete walls under quasi-static loading
    Jafari, Abouzar
    Bengar, Habib Akbarzadeh
    Hassanli, Reza
    Nazari, Maryam
    Dugnani, Roberto
    BULLETIN OF EARTHQUAKE ENGINEERING, 2021, 19 (07) : 2893 - 2917
  • [38] Prediction of Crushing Response for Metal Hexagonal Honeycomb under Quasi-Static Loading
    Geng, Xinyu
    Liu, Yufei
    Zheng, Wei
    Wang, Yongbin
    Li, Meng
    SHOCK AND VIBRATION, 2018, 2018
  • [39] Modeling of macroscopic response of phase transforming materials under quasi-static loading
    Zhong, XG
    Batra, RC
    JOURNAL OF ELASTICITY, 1996, 44 (02) : 145 - 160
  • [40] The mechanical response characteristics of sapphire under dynamic and quasi-static indentation loading
    Luan, Xiaosheng
    Jiang, Feng
    Wang, Ningchang
    Xu, Xipeng
    Lu, Xizhao
    Wen, Qiuling
    CERAMICS INTERNATIONAL, 2018, 44 (13) : 15208 - 15218