Incorporating Graphitic Carbon Nitride (g-C3N4) Quantum Dots into Bulk-Heterojunction Polymer Solar Cells Leads to Efficiency Enhancement

被引:215
|
作者
Chen, Xiang [1 ]
Liu, Qing [1 ]
Wu, Qiliang [1 ]
Du, Pingwu [1 ]
Zhu, Jun [2 ]
Dai, Songyuan [2 ]
Yang, Shangfeng [1 ]
机构
[1] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Dept Mat Sci & Engn,Hefei Natl Lab Phys Sci Micro, Chinese Acad Sci,Key Lab Mat Energy Convers, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Plasma Phys, Key Lab Novel Thin Film Solar Cells, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTRON EXTRACTION LAYER; TRANSPARENT ELECTRODE; EXCEEDING; 10-PERCENT; PERFORMANCE; GRAPHENE; ROUTE; PHOTOCATALYST; WATER; PCBM;
D O I
10.1002/adfm.201505321
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphitic carbon nitride (g-C3N4) has been commonly used as photocatalyst with promising applications in visible-light photocatalytic water-splitting. Rare studies are reported in applying g-C3N4 in polymer solar cells. Here g-C3N4 is applied in bulk heterojunction (BHJ) polymer solar cells (PSCs) for the first time by doping solution-processable g-C3N4 quantum dots (C3N4 QDs) in the active layer, leading to a dramatic efficiency enhancement. Upon C3N4 QDs doping, power conversion efficiencies (PCEs) of the inverted BHJ-PSC devices based on different active layers including poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C-61-butyric acid methyl ester (P3HT:PC61BM), poly(4,8-bis-alkyloxybenzo(1,2-b:4,5-b') dithiophene-2,6-diylalt-(alkyl thieno(3,4-b) thiophene-2-carboxylate)-2,6-diyl):[6,6]-phenyl C-71-butyric acid methyl ester (PBDTTT-C:PC71 BM), and poly[4,8-bis(5-(2-ethylhexyl)hiophen-2-yl) benzo[1,2-b: 4,5-b'] dithiophene-co-3-fluorothieno [3,4-b]thiophene2- carboxylate] (PTB7-Th):PC71 BM reach 4.23%, 6.36%, and 9.18%, which are enhanced by approximate to 17.5%, 11.6%, and 11.8%, respectively, compared to that of the reference (undoped) devices. The PCE enhancement of the C3N4 QDs doped BHJ-PSC device is found to be primarily attributed to the increase of short-circuit current (J(sc)), and this is confirmed by external quantum efficiency (EQE) measurements. The effects of C3N4 QDs on the surface morphology, optical absorption and photoluminescence (PL) properties of the active layer film as well as the charge transport property of the device are investigated, revealing that the efficiency enhancement of the BHJ-PSC devices upon C3N4 QDs doping is due to the conjunct effects including the improved interfacial contact between the active layer and the hole transport layer due to the increase of the roughness of the active layer film, the facilitated photoinduced electron transfer from the conducting polymer donor to fullerene acceptor, the improved conductivity of the active layer, and the improved charge (hole and electron) transport.
引用
收藏
页码:1719 / 1728
页数:10
相关论文
共 50 条
  • [21] Enhancement of the power conversion efficiency of polymer solar cells by incorporating PbSe quantum dots
    Li, Zhixiao
    Wang, Haowei
    Yang, Dan
    Zhang, Li
    Wang, Yishan
    Song, Taojian
    Fu, Chunjie
    Zhang, Hongyu
    Yang, Shengyi
    Zou, Bingsuo
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (02) : 840 - 847
  • [22] Enhancement of graphitic carbon nitride (g-C3N4) assisted photodegradation of Rhodamine B under visible light
    Dora, Easam Ram Kishore Kumar
    Rajmohan, K. S.
    CHEMISTRYSELECT, 2023, 8 (41):
  • [23] Graphitic carbon nitride (g-C3N4) interfacially strengthened carbon fiber epoxy composites
    Song, Bo
    Wang, Tingting
    Sun, Honggang
    Liu, Hu
    Mai, Xianmin
    Wang, Xiaojing
    Wang, Li
    Wang, Ning
    Huang, Yudong
    Guo, Zhanhu
    COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 167 : 515 - 521
  • [24] Thermodynamic Equilibria in Carbon Nitride Photocatalyst Materials and Conditions for the Existence of Graphitic Carbon Nitride g-C3N4
    Botari, Tiago
    Huhn, William Paul
    Lau, Vincent Wing-Hei
    Lotsch, Bettina V.
    Blum, Volker
    CHEMISTRY OF MATERIALS, 2017, 29 (10) : 4445 - 4453
  • [25] Recent Advances in Heteroatom Doped Graphitic Carbon Nitride (g-C3N4) and g-C3N4/Metal Oxide Composite Photocatalysts
    Jiang, Haiyan
    Li, Yang
    Wang, Daohan
    Hong, Xiaodong
    Liang, Bing
    CURRENT ORGANIC CHEMISTRY, 2020, 24 (06) : 673 - 693
  • [26] Mechanical and electronic properties of graphitic carbon nitride (g-C3N4) under biaxial
    Qu, Li-Hua
    Deng, Zun-Yi
    Yu, Jin
    Lu, Xiao-Ke
    Zhong, Chong-Gui
    Zhou, Peng-xia
    Lu, Tong-suo
    Zhang, Jian-Min
    Fu, Xiao-Long
    VACUUM, 2020, 176
  • [27] Polydopamine Coating of Graphitic Carbon Nitride, g-C3N4, Improves Biomedical Application
    Sahiner, Mehtap
    Demirci, Sahin
    Sahiner, Nurettin
    BIOMEDICINES, 2024, 12 (06)
  • [28] Graphitic carbon nitride (g-C3N4)-based magnetic photocatalysts for removal of antibiotics
    Verma, Akshay
    Sharma, Gaurav
    Wang, Tongtong
    Kumar, Amit
    Dhiman, Pooja
    Garcia-Penas, Alberto
    CARBON LETTERS, 2024, : 45 - 73
  • [29] Exfoliated and evaporated thin films of graphitic carbon nitride (g-C3N4): Evolution of photoelectronic properties from bulk
    Patra, Purna Chandra
    Mohapatra, Y. N.
    MATERIALS LETTERS, 2021, 302
  • [30] Graphitic carbon nitride (g-C3N4): A promising support for photoactive heterogeneous catalysis
    Verma, Sanny
    Baig, Nasir Baig
    Nadagouda, Mallikarjuna
    Varma, Rajender
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251