A decision support system for multimodal brain tumor classification using deep learning

被引:110
|
作者
Sharif, Muhammad Imran [1 ]
Khan, Muhammad Attique [2 ]
Alhussein, Musaed [3 ]
Aurangzeb, Khursheed [3 ]
Raza, Mudassar [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Wah Campus, Islamabad, Pakistan
[2] HITEC Univ, Dept Comp Sci, Museum Rd, Taxila, Pakistan
[3] King Saud Univ, Coll Comp & Informat Sci, Comp Engn Dept, Riyadh 11543, Saudi Arabia
关键词
Brain tumor; Deep learning; Feature extraction; Feature selection; Feature fusion; INTEGRATED DESIGN; FEATURES FUSION; SEGMENTATION; DIAGNOSIS; IMAGES; RECOGNITION;
D O I
10.1007/s40747-021-00321-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiclass classification of brain tumors is an important area of research in the field of medical imaging. Since accuracy is crucial in the classification, a number of techniques are introduced by computer vision researchers; however, they still face the issue of low accuracy. In this article, a new automated deep learning method is proposed for the classification of multiclass brain tumors. To realize the proposed method, the Densenet201 Pre-Trained Deep Learning Model is fine-tuned and later trained using a deep transfer of imbalanced data learning. The features of the trained model are extracted from the average pool layer, which represents the very deep information of each type of tumor. However, the characteristics of this layer are not sufficient for a precise classification; therefore, two techniques for the selection of features are proposed. The first technique is Entropy-Kurtosis-based High Feature Values (EKbHFV) and the second technique is a modified genetic algorithm (MGA) based on metaheuristics. The selected features of the GA are further refined by the proposed new threshold function. Finally, both EKbHFV and MGA-based features are fused using a non-redundant serial-based approach and classified using a multiclass SVM cubic classifier. For the experimental process, two datasets, including BRATS2018 and BRATS2019, are used without increase and have achieved an accuracy of more than 95%. The precise comparison of the proposed method with other neural nets shows the significance of this work.
引用
下载
收藏
页码:3007 / 3020
页数:14
相关论文
共 50 条
  • [21] DEEP LEARNING APPLICATION TO CLINICAL DECISION SUPPORT SYSTEM IN SLEEP STAGE CLASSIFICATION
    Kim, D. -K.
    Kim, D.
    Lee, J. -G.
    Woo, Y.
    Jeong, J.
    SLEEP MEDICINE, 2022, 100 : S293 - S293
  • [22] Brain Tumor Classification Using Deep Neural Network and Transfer Learning
    Sandeep Kumar
    Shilpa Choudhary
    Arpit Jain
    Karan Singh
    Ali Ahmadian
    Mohd Yazid Bajuri
    Brain Topography, 2023, 36 : 305 - 318
  • [23] Detection and classification of brain tumor using hybrid deep learning models
    Baiju Babu Vimala
    Saravanan Srinivasan
    Sandeep Kumar Mathivanan
    Prabhu Mahalakshmi
    Gemmachis Teshite Jayagopal
    Scientific Reports, 13
  • [24] Improving Brain Tumor Classification with Deep Learning Using Synthetic Data
    Yapici, Muhammed Mutlu
    Karakis, Rukiye
    Gurkahraman, Kali
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 5049 - 5067
  • [25] Brain Tumor Classification Using Deep Neural Network and Transfer Learning
    Kumar, Sandeep
    Choudhary, Shilpa
    Jain, Arpit
    Singh, Karan
    Ahmadian, Ali
    Bajuri, Mohd Yazid
    BRAIN TOPOGRAPHY, 2023, 36 (03) : 305 - 318
  • [26] Brain Tumor Classification Deep Learning Model Using Neural Networks
    Maquen-Nino, Gisella Luisa Elena
    Sandoval-Juarez, Ariana Ayelen
    Veliz-La Rosa, Robinson Andres
    Carrion-Barco, Gilberto
    Adrianzen-Olano, Ivan
    Vega-Huerta, Hugo
    De-La-Cruz-VdV, Percy
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2023, 19 (09) : 81 - 92
  • [27] Detection and classification of brain tumor using hybrid deep learning models
    Babu Vimala, Baiju
    Srinivasan, Saravanan
    Mathivanan, Sandeep Kumar
    Mahalakshmi
    Jayagopal, Prabhu
    Dalu, Gemmachis Teshite
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] A Framework for Brain Tumor Segmentation and Classification using Deep Learning Algorithm
    Kulkarni, Sunita M.
    Sundari, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (08) : 374 - 382
  • [29] Brain tumor classification of microscopy images using deep residual learning
    Ishikawa, Yota
    Washiya, Kiyotada
    Aoki, Kota
    Nagahashi, Hiroshi
    SPIE BIOPHOTONICS AUSTRALASIA, 2016, 10013
  • [30] A deep learning approach for brain tumor classification using MRI images*
    Aamir, Muhammad
    Rahman, Ziaur
    Dayo, Zaheer Ahmed
    Abro, Waheed Ahmed
    Uddin, M. Irfan
    Khan, Inayat
    Imran, Ali Shariq
    Ali, Zafar
    Ishfaq, Muhammad
    Guan, Yurong
    Hu, Zhihua
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101