Graphitic Carbon Nitride (g-C3N4)-Derived N-Rich Graphene with Tuneable Interlayer Distance as a High-Rate Anode for Sodium-Ion Batteries

被引:302
|
作者
Liu, Jinlong [1 ]
Zhang, Yaqian [1 ]
Zhang, Lei [2 ]
Xie, Fangxi [1 ]
Vasileff, Anthony [1 ]
Qiao, Shi-Zhang [1 ,3 ]
机构
[1] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[3] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
few-layer graphene; graphitic carbon nitride; interlayer distance; nitrogen doping; sodium-ion batteries; HARD-CARBON; RAMAN-SPECTROSCOPY; DOPED GRAPHENE; ENERGY-STORAGE; LOW-COST; PERFORMANCE; INSERTION; NITROGEN; NANOFIBERS; FRAMEWORKS;
D O I
10.1002/adma.201901261
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heteroatom-doped carbon materials with expanded interlayer distance have been widely studied as anodes for sodium-ion batteries (SIBs). However, it remains unexplored to further enlarge the interlayer spacing and reveal the influence of heteroatom doping on carbon nanostructures for developing more efficient SIB anode materials. Here, a series of N-rich few-layer graphene (N-FLG) with tuneable interlayer distance ranging from 0.45 to 0.51 nm is successfully synthesized by annealing graphitic carbon nitride (g-C3N4) under zinc catalysis and selected temperature (T = 700, 800, and 900 degrees C). More significantly, the correlation between N dopants and interlayer distance of resultant N-FLG-T highlights the effect of pyrrolic N on the enlargement of graphene interlayer spacing, due to its stronger electrostatic repulsion. As a consequence, N-FLG-800 achieves the optimal properties in terms of interlayer spacing, nitrogen configuration and electronic conductivity. When used as an anode for SIBs, N-FLG-800 shows remarkable Na+ storage performance with ultrahigh rate capability (56.6 mAh g(-1) at 40 A g(-1)) and excellent long-term stability (211.3 mAh g(-1) at 0.5 A g(-1) after 2000 cycles), demonstrating the effectiveness of material design.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Mechanical and electronic properties of graphitic carbon nitride (g-C3N4) under biaxial
    Qu, Li-Hua
    Deng, Zun-Yi
    Yu, Jin
    Lu, Xiao-Ke
    Zhong, Chong-Gui
    Zhou, Peng-xia
    Lu, Tong-suo
    Zhang, Jian-Min
    Fu, Xiao-Long
    VACUUM, 2020, 176
  • [32] Focused Review on Graphitic Carbon Nitride (g-C3N4) in Corrosion and Erosion Applications
    Fayyad, Eman M.
    Nabhan, Fatma
    Abdullah, Aboubakr M.
    COATINGS, 2024, 14 (12):
  • [33] Polydopamine Coating of Graphitic Carbon Nitride, g-C3N4, Improves Biomedical Application
    Sahiner, Mehtap
    Demirci, Sahin
    Sahiner, Nurettin
    BIOMEDICINES, 2024, 12 (06)
  • [34] Graphitic carbon nitride (g-C3N4)-based magnetic photocatalysts for removal of antibiotics
    Verma, Akshay
    Sharma, Gaurav
    Wang, Tongtong
    Kumar, Amit
    Dhiman, Pooja
    Garcia-Penas, Alberto
    CARBON LETTERS, 2024, : 45 - 73
  • [35] Graphitic carbon nitride (g-C3N4): A promising support for photoactive heterogeneous catalysis
    Verma, Sanny
    Baig, Nasir Baig
    Nadagouda, Mallikarjuna
    Varma, Rajender
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [36] Graphitic carbon nitride (g-C3N4)-based photocatalytic materials for hydrogen evolution
    Gao, Rui-Han
    Ge, Qingmei
    Jiang, Nan
    Cong, Hang
    Liu, Mao
    Zhang, Yun-Qian
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [37] Graphitic carbon nitride (g-C3N4)-based electrochemical sensors for the determination of antiviral
    Sreenivasulu, Madasu
    Malode, Shweta J.
    Alqarni, Sondos Abdullah
    Shetti, Nagaraj P.
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 312
  • [38] Preparation and characterization of photoactive antimicrobial graphitic carbon nitride (g-C3N4) films
    Thurston, John H.
    Hunter, Necia M.
    Cornell, Kenneth A.
    RSC ADVANCES, 2016, 6 (48) : 42240 - 42248
  • [39] Erosion behaviour of graphitic carbon nitride (g-C3N4) reinforced epoxy composites
    Naidu, P. Pratap
    Raghavendra, Gujjala
    INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND MANUFACTURING APPLICATIONS (ICONAMMA-2018), 2019, 577
  • [40] N-doped hollow porous carbon microspheres with high rate performance as anode for sodium-ion batteries
    Wang, Xin
    Zhu, Fuliang
    Xiao, Mingjun
    Liu, Shizhe
    Liu, Xingzhong
    Meng, Yanshuang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (10) : 7913 - 7922