THE WEYL CORRESPONDENCE AS A FUNCTIONAL CALCULUS FOR NON-COMMUTING OPERATORS

被引:0
|
作者
Eydenberg, Michael [1 ]
机构
[1] New Mexico State Univ, Dept Math Sci, Las Cruces, NM 88003 USA
关键词
Weyl calculus; pseudodifferential operators; semi-groups;
D O I
10.1216/RMJ-2009-39-5-1467
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this expository paper, we describe the Weyl calculus for bounded, self-adjoint operators acting on a Hilbert space as well as the original Weyl correspondence for the position Q and momentum P operators on S(R-n). We describe some classes of functions for which the calculus is well defined and give a representation for the action of the calculus in these separate cases. In particular, we verify that the Weyl calculus is well defined for polynomials and give results consistent with the natural algebraic definition. The proof of this result for the original Weyl correspondence is obtained via an analysis of the commutator of P and Q on S(R-2n). We also discuss the connection of the Weyl calculus with some recent developments in functional calculi.
引用
收藏
页码:1467 / 1496
页数:30
相关论文
共 50 条
  • [41] WEYL CALCULUS AND SUBELLIPTIC OPERATORS
    CANCELIER, CE
    CHEMIN, JY
    XU, CJ
    [J]. ANNALES DE L INSTITUT FOURIER, 1993, 43 (04) : 1157 - 1178
  • [42] Distance in the non-commuting graph of groups
    Azad, Azizolla
    Eliasi, Mehdi
    [J]. ARS COMBINATORIA, 2011, 99 : 279 - 287
  • [43] A Note on Integral Non-Commuting Graphs
    Ghorbania, Modjtaba
    Gharavi-Alkhansari, Zahra
    [J]. FILOMAT, 2017, 31 (03) : 663 - 669
  • [44] Ergodicity and mixing of non-commuting epimorphisms
    Bergelson, Vitaly
    Gorodnik, Alexander
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 95 : 329 - 359
  • [45] On θ-commutators and the corresponding non-commuting graphs
    Shalchi, S.
    Erfanian, A.
    Farrokhi, M. D. G.
    [J]. OPEN MATHEMATICS, 2017, 15 : 1530 - 1538
  • [46] The twin non-commuting graph of a group
    Behnaz Tolue
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 591 - 599
  • [47] The twin non-commuting graph of a group
    Tolue, Behnaz
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (02) : 591 - 599
  • [48] Imprecise probability for non-commuting observables
    Allahverdyan, Armen E.
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [49] The structure of doubly non-commuting isometrics
    de Jeu, Marcel
    Pinto, Paulo R.
    [J]. ADVANCES IN MATHEMATICS, 2020, 368
  • [50] NON-COMMUTING GRAPHS OF NILPOTENT GROUPS
    Abdollahi, Alireza
    Shahverdi, Hamid
    [J]. COMMUNICATIONS IN ALGEBRA, 2014, 42 (09) : 3944 - 3949