Room temperature continuous wave quantum dot cascade laser emitting at 7.2 μm

被引:11
|
作者
Zhuo, Ning [1 ,3 ]
Zhang, Jin-Chuan [1 ,3 ]
Wang, Feng-Jiao [1 ,2 ,3 ]
Liu, Ying-Hui [1 ,2 ,3 ]
Zhai, Shen-Qiang [1 ,3 ]
Zhao, Yue [1 ,2 ,3 ]
Wang, Dong-Bo [1 ,2 ,3 ]
Jia, Zhi-Wei [1 ,2 ,3 ]
Zhou, Yu-Hong [1 ,2 ,3 ]
Wang, Li-Jun [1 ,2 ,3 ]
Liu, Jun-Qi [1 ,2 ,3 ]
Liu, Shu-Man [1 ,2 ,3 ]
Liu, Feng-Qi [1 ,2 ,3 ]
Wang, Zhan-Guo [1 ,3 ]
Khurgin, Jacob B. [4 ]
Sun, Greg [5 ]
机构
[1] Cliinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, POB 912, Beijing 10008, Peoples R China
[2] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing, Peoples R China
[3] Beijing Key Lab Low Dimens Semicond Mat & Devices, POB 912, Beijing 100083, Peoples R China
[4] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[5] Univ Massachusetts, Dept Engn, Boston, MA 02125 USA
来源
OPTICS EXPRESS | 2017年 / 25卷 / 12期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
SEMICONDUCTOR-LASER; ELECTROLUMINESCENCE; POWER;
D O I
10.1364/OE.25.013807
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate a quantum cascade laser with active regions consisting of InAs quantum dots deposited on GaAs buffer layers that arc embedded in InGaAs wells confined by InAlAs barriers. Continuous wave room temperature lasing at the wavelength of 7.2 mu m has been demonstrated with the threshold current density as low as 1.89 kA/cm(2), while in pulsed operational mode lasing at temperatures as high as 110 degrees C had been observed. A phenomenological theory explaining the improved performance due to weak localization of states had been formulated. (C) 2017 Optical Society of America
引用
收藏
页码:13807 / 13815
页数:9
相关论文
共 50 条
  • [21] Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser
    Park, G
    Shchekin, OB
    Csutak, S
    Huffaker, DL
    Deppe, DG
    APPLIED PHYSICS LETTERS, 1999, 75 (21) : 3267 - 3269
  • [22] High-power continuous-wave operation of a 6 μm quantum-cascade laser at room temperature
    Yu, JS
    Slivken, S
    Evans, A
    Doris, L
    Razeghi, M
    APPLIED PHYSICS LETTERS, 2003, 83 (13) : 2503 - 2505
  • [23] Room temperature continuous wave THz quantum cascade laser source with high power operation
    Razeghi, M.
    Lu, Q. Y.
    Bandyopadhyay, N.
    Slivken, S.
    Bai, Y.
    TERAHERTZ EMITTERS, RECEIVERS, AND APPLICATIONS V, 2014, 9199
  • [24] Continuous-wave operation of λ∼4.8 μm quantum-cascade lasers at room temperature
    Evans, A
    Yu, JS
    Slivken, S
    Razeghi, M
    APPLIED PHYSICS LETTERS, 2004, 85 (12) : 2166 - 2168
  • [25] Room temperature continuous-wave operation of a dual-wavelength quantum cascade laser
    管延娇
    孙瑞轩
    卓宁
    鹿希雨
    张锦川
    翟慎强
    刘俊岐
    刘舒曼
    王利军
    刘峰奇
    ChineseOpticsLetters, 2023, 21 (01) : 120 - 124
  • [26] Room temperature continuous-wave operation of a dual-wavelength quantum cascade laser
    Guan, Yanjiao
    Sun, Ruixuan
    Zhuo, Ning
    Lu, Xiyu
    Zhang, Jinchuan
    Zhai, Shenqiang
    Liu, Junqi
    Liu, Shuman
    Wang, Lijun
    Liu, Fengqi
    CHINESE OPTICS LETTERS, 2023, 21 (01)
  • [27] Nitrous acid measurement based on room-temperature continuous wave quantum cascade laser
    Dong, F. (fzdong@aiofm.ac.cn), 1600, Chinese Optical Society (33):
  • [28] Room temperature continuous wave operation of λ ∼ 3-3.2 μm quantum cascade lasers
    Bandyopadhyay, N.
    Bai, Y.
    Tsao, S.
    Nida, S.
    Slivken, S.
    Razeghi, M.
    APPLIED PHYSICS LETTERS, 2012, 101 (24)
  • [29] Terahertz lasing at room temperature: A numerical study of a vertical-emitting quantum cascade laser based on a quantum dot superlattice
    Mittelstaedt, Alexander
    Greif, Ludwig A. Th
    Jagsch, Stefan T.
    Schliwa, Andrei
    PHYSICAL REVIEW B, 2021, 103 (11)
  • [30] Room Temperature Continuous-Wave Operation of Top Metal Grating Distributed Feedback Quantum Cascade Laser at λ ∼ 7.6 μm
    Zhang, Jinchuan
    Wang, Lijun
    Tan, Song
    Chen, Jianyan
    Zhai, Shenqiang
    Liu, Junqi
    Liu, Fengqi
    Wang, Zhanguo
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2012, 24 (13) : 1100 - 1102