A masked spectral bound for maximum-entropy sampling

被引:0
|
作者
Anstreicher, KM [1 ]
Lee, J [1 ]
机构
[1] Univ Iowa, Tippie Coll Business, Iowa City, IA USA
关键词
maximum-entropy sampling; experimental design; sernidefinite programming; spectral partition bound;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new "masked spectral bound" for the maximum entropy sampling problem. This bound is a continuous generalization of the very effective "spectral partition bound". Optimization of the masked spectral bound requires the minimization of a nonconvex, nondifferentiable objective over a semidefiniteness constraint. We describe a nonlinear affine scaling algorithm to approximately minimize the bound. Implementation of the procedure obtains excellent bounds at modest computational expense.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条