La0.4Ba0.6Fe0.8Zn0.2O3-δ as cathode in solid oxide fuel cells for simultaneous NO reduction and electricity generation

被引:2
|
作者
Zhou, Renjie [1 ]
Bu, Yunfei [1 ]
Xu, Dandan [1 ]
Zhong, Qin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
solid oxide fuel cells; cathode; perovskite; NO reduction; electricity generation; COMPOSITE CATHODE; CU; PEROVSKITE;
D O I
10.1080/09593330.2013.856953
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A perovskite-type oxide La0.4Ba Fe-0.6 Zn-0.8 O-0.2 (3-) (LBFZ) was investigated as the cathode material for simultaneous NO reduction and electricity generation in solid oxide fuel cells (SOFCs). The microstructure of LBFZ was demonstrated by X-ray diffraction and scanning electron microscopy. The results showed that a single cubic perovskite LBFZ was formed after calcined at 1100 degrees C. Meanwhile, the solid-state reaction between LBFZ and Ce0.8Sm O-0.2 (1.9) (SDC) at 900 degrees C was negligible. To measure the electrochemical properties, SOFC units were constructed with Sm0.9Sr Cr-0.1 Fe-0.5 O-0.5 (3) as the anode, SDC as the electrolyte and LBFZ as the cathode. The maximum power density increased with the increasing NO concentration and temperature. The cell resistance is mainly due to the cathodic polarization resistance.
引用
收藏
页码:925 / 930
页数:6
相关论文
共 50 条
  • [1] Evaluation of La0.4Ba0.6Fe0.8Zn0.2O3-δ + Sm0.2Ce0.8O1.9 as a potential cobalt-free composite cathode for intermediate temperature solid oxide fuel cells
    Bu, Yun-fei
    Ding, Dong
    Lai, Samson Yuxiu
    Chen, Dong-Chang
    Xiong, Xun-Hui
    Wei, Tao
    Zhong, Qin
    JOURNAL OF POWER SOURCES, 2015, 275 : 808 - 814
  • [2] Characterisation of La0.6Sr0.4CO0.2Fe0.8O3-δ - Ba0.5Sr0.5CO0.8Fe0.2O3-δ composite as cathode for solid oxide fuel cells
    Giuliano, Alice
    Carpanese, Maria Paola
    Panizza, Marco
    Cerisola, Giacomo
    Clematis, Davide
    Barbucci, Antonio
    ELECTROCHIMICA ACTA, 2017, 240 : 258 - 266
  • [3] Integration of air separation and partial oxidation of methane in the La0.4Ba0.6Fe0.8Zn0.2O3-δ membrane reactor
    Gong, Zhengliang
    Hong, Liang
    JOURNAL OF MEMBRANE SCIENCE, 2011, 380 (1-2) : 81 - 86
  • [4] La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells
    Hartley, A
    Sahibzada, M
    Weston, M
    Metcalfe, IS
    Mantzavinos, D
    CATALYSIS TODAY, 2000, 55 (1-2) : 197 - 204
  • [5] In situ sinterable cathode with nanocrystalline La0.6Sr0.4Co0.2Fe0.8O3-δ for solid oxide fuel cells
    Park, Young Min
    Kim, Ju Hee
    Kim, Haekyoung
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (09) : 5617 - 5623
  • [6] Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La0.6Sr0.4Co0.8Fe0.2O3-δ COMPOSITE CATHODE FOR SOLID OXIDE FUEL CEL
    Mosialek, M.
    Kedra, A.
    Krzan, M.
    Bielanska, E.
    Tatko, M.
    ARCHIVES OF METALLURGY AND MATERIALS, 2016, 61 (03) : 1137 - 1141
  • [7] Improvement in stability of La0.4Ba0.6CoO3 cathode by combination with La0.6Sr0.4Co0.2Fe0.8O3 for intermediate temperature-solid oxide fuel cells
    Jing Xie
    Young-Wan Ju
    Takaaki Sakai
    Tatsumi Ishihara
    Journal of Solid State Electrochemistry, 2013, 17 : 2251 - 2258
  • [8] Improvement in stability of La0.4Ba0.6CoO3 cathode by combination with La0.6Sr0.4Co0.2Fe0.8O3 for intermediate temperature-solid oxide fuel cells
    Xie, Jing
    Ju, Young-Wan
    Sakai, Takaaki
    Ishihara, Tatsumi
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (08) : 2251 - 2258
  • [9] Synthesis and characterization of La0.6Sr0.4Fe0.8Cu0.2O3-δ oxide as cathode for Intermediate Temperature Solid Oxide Fuel Cells
    Vazquez, Santiago
    Davyt, Sebastian
    Basbus, Juan E.
    Soldati, Analia L.
    Amaya, Alejandro
    Serquis, Adriana
    Faccio, Ricardo
    Suescun, Leopoldo
    JOURNAL OF SOLID STATE CHEMISTRY, 2015, 228 : 208 - 213
  • [10] Moisture Effect on La0.8Sr0.2MnO3 and La0.6Sr0.4Co0.2Fe0.8O3 Cathode Behaviors in Solid Oxide Fuel Cells
    Shen, F.
    Lu, K.
    FUEL CELLS, 2015, 15 (01) : 105 - 114