Improvement in stability of La0.4Ba0.6CoO3 cathode by combination with La0.6Sr0.4Co0.2Fe0.8O3 for intermediate temperature-solid oxide fuel cells

被引:3
|
作者
Xie, Jing [1 ]
Ju, Young-Wan [2 ]
Sakai, Takaaki [2 ,3 ]
Ishihara, Tatsumi [1 ,4 ]
机构
[1] Kyushu Univ, Dept Automot Sci, Grad Sch Integrated Frontier Sci, Nishi Ku, Fukuoka 8190395, Japan
[2] Kyushu Univ, Fac Engn, Dept Appl Chem, Nishi Ku, Fukuoka 8190395, Japan
[3] Kyushu Univ, Ctr Mol Chem, Fac Engn, Nishi Ku, Fukuoka 8190395, Japan
[4] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, Fukuoka 8190395, Japan
关键词
Composite oxide cathode; Cathodic stability; La(Ba)CoO3; LaFeO3; CONDUCTIVITY; PERFORMANCE; MECHANISMS; BACOO3; ANODE; LA;
D O I
10.1007/s10008-013-2087-2
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Improvement in long-term stability and cathodic activity of La0.4Ba0.6CoO3 (BLC) was studied by mixing with La0.6Sr0.4Co0.2Fe0.8O3 (LSCF). LSCF exhibits good long-term stability; however, surface activity is not high like Co-based perovskite. On the other hand, the cathodic activity of BLC is high; however, long-term stability was not so good and large degradation at initial period is observed. Combination of the two oxides shows small overpotential as well as improved long-term stability. Effects of BLC/LSCF ratio on stability and overpotential were studied and it was found that BLC-LSCF (7:3) showed the most stable and small cathodic overpotential among the examined compositions. Although the power density was still slightly decreased over 24 h at 0.5 V terminal voltage, the maximum powder density of the cell using BLC-LSCF composite oxides for cathode shows 2.5 times larger than that of the cell using LSCF cathode and 1.06 times larger than that of BLC. Degradation rate is smaller than 4 % from 5 to 24 h on this BLC-LSCF cathode at current density as high as 682 mA/cm(2) after 24 h operation.
引用
收藏
页码:2251 / 2258
页数:8
相关论文
共 50 条
  • [1] Improvement in stability of La0.4Ba0.6CoO3 cathode by combination with La0.6Sr0.4Co0.2Fe0.8O3 for intermediate temperature-solid oxide fuel cells
    Jing Xie
    Young-Wan Ju
    Takaaki Sakai
    Tatsumi Ishihara
    [J]. Journal of Solid State Electrochemistry, 2013, 17 : 2251 - 2258
  • [2] La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells
    Hartley, A
    Sahibzada, M
    Weston, M
    Metcalfe, IS
    Mantzavinos, D
    [J]. CATALYSIS TODAY, 2000, 55 (1-2) : 197 - 204
  • [3] Synthesis and characterization La0.6Sr0.4CoO3 and La0.6Sr0.4Co0.2Fe0.8O3 nanotubes for cathode of solid-oxide fuel cells
    Sacanell, J.
    Bellino, M. G.
    Lamas, D. G.
    Leyva, A. G.
    [J]. PHYSICA B-CONDENSED MATTER, 2007, 398 (02) : 341 - 343
  • [4] Influence of sulfur impurities on the stability of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cells
    Xie, Jing
    Ju, Young-Wan
    Ishihara, Tatsumi
    [J]. SOLID STATE IONICS, 2013, 249 : 177 - 183
  • [5] Silver infiltrated La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate temperature solid oxide fuel cells
    Sakito, Y.
    Hirano, A.
    Imanishi, N.
    Takeda, Y.
    Yamamoto, O.
    Liu, Y.
    [J]. JOURNAL OF POWER SOURCES, 2008, 182 (02) : 476 - 481
  • [6] Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation
    Oh, Dongjo
    Gostovic, Danijel
    Wachsman, Eric D.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2012, 27 (15) : 1992 - 1999
  • [7] Moisture Effect on La0.8Sr0.2MnO3 and La0.6Sr0.4Co0.2Fe0.8O3 Cathode Behaviors in Solid Oxide Fuel Cells
    Shen, F.
    Lu, K.
    [J]. FUEL CELLS, 2015, 15 (01) : 105 - 114
  • [8] Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 cathode degradation
    Dongjo Oh
    Danijel Gostovic
    Eric D. Wachsman
    [J]. Journal of Materials Research, 2012, 27 : 1992 - 1999
  • [9] Cathode supported tubular solid oxide fuel cells with nanostructured La0.6Sr0.4Co0.2Fe0.8O3 electrocatalysts
    Wu, Liuer
    Zhao, Ling
    Zhan, Zhongliang
    Xia, Changrong
    [J]. JOURNAL OF POWER SOURCES, 2014, 266 : 268 - 274
  • [10] Extended reaction zone of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell
    Lu, Zigui
    Hardy, John
    Templeton, Jared
    Stevenson, Jeffry
    [J]. JOURNAL OF POWER SOURCES, 2012, 198 : 90 - 94