Additivity of entropic uncertainty relations

被引:10
|
作者
Schwonnek, Rene [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Hannover, Germany
来源
QUANTUM | 2018年 / 2卷
关键词
QUANTUM; ENTANGLEMENT; INEQUALITIES;
D O I
10.22331/q-2018-03-30-59
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the uncertainty between two pairs of local projective measurements performed on a multipartite system. We show that the optimal bound in any linear uncertainty relation, formulated in terms of the Shannon entropy, is additive. This directly implies, against naive intuition, that the minimal entropic uncertainty can always be realized by fully separable states. Hence, in contradiction to proposals by other authors, no entanglement witness can be constructed solely by comparing the attainable uncertainties of entangled and separable states. However, our result gives rise to a huge simplification for computing global uncertainty bounds as they now can be deduced from local ones. Furthermore, we provide the natural generalization of the Maassen and Uffink inequality for linear uncertainty relations with arbitrary positive coefficients.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] ENTROPIC UNCERTAINTY AND CERTAINTY RELATIONS FOR COMPLEMENTARY OBSERVABLES
    SANCHEZ, J
    [J]. PHYSICS LETTERS A, 1993, 173 (03) : 233 - 239
  • [32] Entropic uncertainty relations for quantum information scrambling
    Halpern, Nicole Yunger
    Bartolotta, Anthony
    Pollack, Jason
    [J]. COMMUNICATIONS PHYSICS, 2019, 2
  • [33] Strong entropic uncertainty relations for multiple measurements
    Xiao, Yunlong
    Jing, Naihuan
    Fei, Shao-Ming
    Li, Tao
    Li-Jost, Xianqing
    Ma, Teng
    Wang, Zhi-Xi
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [34] Entropic uncertainty relations from quantum designs
    Ketterer, Andreas
    Guehne, Otfried
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [35] ENTROPIC UNCERTAINTY RELATIONS FOR ANGULAR-DISTRIBUTIONS
    BIALYNICKIBIRULA, I
    MADAJCZYK, JL
    [J]. PHYSICS LETTERS A, 1985, 108 (08) : 384 - 386
  • [36] Zero-contingent entropic uncertainty relations
    Majernik, V.
    Vlcek, M.
    Majernikova, E.
    [J]. Acta Physica Hungarica New Series Heavy Ion Physics, 9 (04): : 361 - 377
  • [37] Particle number and interactions in the entropic uncertainty relations
    Salazar, Saul J. C.
    Laguna, Humberto G.
    Sagar, Robin P.
    [J]. PHYSICA SCRIPTA, 2023, 98 (12)
  • [38] ENTROPIC UNCERTAINTY RELATIONS IN QUANTUM-MECHANICS
    BIALYNICKIBIRULA, I
    [J]. LECTURE NOTES IN MATHEMATICS, 1985, 1136 : 90 - 103
  • [39] Majorization entropic uncertainty relations for quantum operations
    Rastegin, Alexey E.
    Zyczkowski, Karol
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (35)
  • [40] Conditional entropic uncertainty relations for Tsallis entropies
    Kurzyk, Dariusz
    Pawela, Lukasz
    Puchala, Zbigniew
    [J]. QUANTUM INFORMATION PROCESSING, 2018, 17 (08)