Additivity of entropic uncertainty relations

被引:10
|
作者
Schwonnek, Rene [1 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Hannover, Germany
来源
QUANTUM | 2018年 / 2卷
关键词
QUANTUM; ENTANGLEMENT; INEQUALITIES;
D O I
10.22331/q-2018-03-30-59
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the uncertainty between two pairs of local projective measurements performed on a multipartite system. We show that the optimal bound in any linear uncertainty relation, formulated in terms of the Shannon entropy, is additive. This directly implies, against naive intuition, that the minimal entropic uncertainty can always be realized by fully separable states. Hence, in contradiction to proposals by other authors, no entanglement witness can be constructed solely by comparing the attainable uncertainties of entangled and separable states. However, our result gives rise to a huge simplification for computing global uncertainty bounds as they now can be deduced from local ones. Furthermore, we provide the natural generalization of the Maassen and Uffink inequality for linear uncertainty relations with arbitrary positive coefficients.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] ENTROPIC UNCERTAINTY RELATIONS
    BIALYNICKIBIRULA, I
    [J]. PHYSICS LETTERS A, 1984, 103 (05) : 253 - 254
  • [2] Optimality of entropic uncertainty relations
    Abdelkhalek, Kais
    Schwonnek, Rene
    Maassen, Hans
    Furrer, Fabian
    Duhme, Joerg
    Raynal, Philippe
    Englert, Berthold-Georg
    Werner, Reinhard F.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (06)
  • [3] ENTROPIC FORMULATION OF UNCERTAINTY RELATIONS
    SRINIVAS, MD
    [J]. PRAMANA, 1985, 25 (04) : 369 - 375
  • [4] Entropic uncertainty relations and their applications
    Coles, Patrick J.
    Berta, Mario
    Tomamichel, Marco
    Wehner, Stephanie
    [J]. REVIEWS OF MODERN PHYSICS, 2017, 89 (01)
  • [5] Majorization entropic uncertainty relations
    Puchala, Zbigniew
    Rudnicki, Lukasz
    Zyczkowski, Karol
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (27)
  • [6] GENERALIZED ENTROPIC UNCERTAINTY RELATIONS
    MAASSEN, H
    UFFINK, JBM
    [J]. PHYSICAL REVIEW LETTERS, 1988, 60 (12) : 1103 - 1106
  • [7] The acoustic entropic uncertainty relations
    Majerník, V
    Vetesnik, A
    Kovár, D
    [J]. ACUSTICA, 2000, 86 (02): : 385 - 387
  • [8] Review on entropic uncertainty relations
    Li Li-Juan
    Ming Fei
    Song Xue-Ke
    Ye Liu
    Wang Dong
    [J]. ACTA PHYSICA SINICA, 2022, 71 (07)
  • [9] Asymptotic entropic uncertainty relations
    Adamczak, Radoslaw
    Latala, Rafal
    Puchala, Zbigniew
    Zyczkowski, Karol
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (03)
  • [10] Experimental investigation of entropic uncertainty relations and coherence uncertainty relations
    Ding, Zhi-Yong
    Yang, Huan
    Wang, Dong
    Yuan, Hao
    Yang, Jie
    Ye, Liu
    [J]. PHYSICAL REVIEW A, 2020, 101 (03)