A gamma kernel density estimation for insurance loss data

被引:20
|
作者
Jeon, Yongho [1 ]
Kim, Joseph H. T. [1 ]
机构
[1] Yonsei Univ, Dept Appl Stat, Seoul 120749, South Korea
来源
INSURANCE MATHEMATICS & ECONOMICS | 2013年 / 53卷 / 03期
基金
新加坡国家研究基金会;
关键词
Kernel density estimation; Gamma kernel; Insurance loss; Erlang mixture; HEAVY-TAILED DISTRIBUTIONS; MIXTURES; INVERSE;
D O I
10.1016/j.insmatheco.2013.08.009
中图分类号
F [经济];
学科分类号
02 ;
摘要
Fitting insurance loss data can be challenging because of their non-negativity, asymmetry, skewness, and possible multi-modality. Though many parametric models have been used in the actuarial literature, these difficulties call for more flexible models for actuarial applications. In this paper, we propose a new class of gamma kernel density estimators (GKDEs) based on the gamma density. We prove that the density of the proposed model converges to that of any loss random variable which is non-negative and continuous, and establish its rate of convergence, under some technical conditions. The proposed model has several advantages over the existing gamma kernel class by Chen (2000) in that it is a valid density for any finite sample and has standard distributional quantities, such as the moments, the conditional tail moments, and the compound distribution with GKDE claim amounts, in analytic form. The model is also a competing model of the Erlang mixture by Lee and Lin (2010) in its flexibility, but with a straightforward implementation and optimization. As numerical examples, we fit the gamma kernel density estimator to actual insurance data and find that the proposed model gives adequate results compared to the Erlang mixture and the Phase-type models. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:569 / 579
页数:11
相关论文
共 50 条
  • [1] Inverse gamma kernel density estimation for nonnegative data
    Yoshihide Kakizawa
    Gaku Igarashi
    [J]. Journal of the Korean Statistical Society, 2017, 46 : 194 - 207
  • [2] Inverse gamma kernel density estimation for nonnegative data
    Kakizawa, Yoshihide
    IgaraShi, Gaku
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (02) : 194 - 207
  • [3] Recursive generalized gamma kernel density estimation for nonnegative dependent data
    Khemici, Mohamed
    Zougab, Nabil
    Ziane, Yasmina
    Adjabi, Smail
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (06) : 2976 - 2987
  • [4] Generalised gamma kernel density estimation for nonnegative data and its bias reduction
    Igarashi, Gaku
    Kakizawa, Yoshihide
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2018, 30 (03) : 598 - 639
  • [5] Asymmetric Kernel Density Estimation Based on Grouped Data with Applications to Loss Model
    Xu, Sun
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (03) : 657 - 672
  • [6] Kernel density estimation of actuarial loss functions
    Bolancé, C
    Guillen, M
    Nielsen, JP
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (01): : 19 - 36
  • [7] Kernel density estimation for hierarchical data
    Wilson, Christopher M.
    Gerard, Patrick
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2020, 49 (06) : 1495 - 1512
  • [8] Kernel density estimation with bounded data
    Kang, Young-Jin
    Noh, Yoojeong
    Lim, O-Kaung
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 57 (01) : 95 - 113
  • [9] Kernel density estimation with bounded data
    Young-Jin Kang
    Yoojeong Noh
    O-Kaung Lim
    [J]. Structural and Multidisciplinary Optimization, 2018, 57 : 95 - 113
  • [10] GAMMA KERNEL ESTIMATION OF THE DENSITY DERIVATIVE ON THE POSITIVE SEMI-AXIS BY DEPENDENT DATA
    Markovich, L. A.
    [J]. REVSTAT-STATISTICAL JOURNAL, 2016, 14 (03) : 327 - 348