Recursive generalized gamma kernel density estimation for nonnegative dependent data

被引:0
|
作者
Khemici, Mohamed [1 ]
Zougab, Nabil [1 ]
Ziane, Yasmina [1 ]
Adjabi, Smail [1 ]
机构
[1] Univ Bejaia, Fac Exact Sci, Res Unit LaMOS, Bejaia 06000, Algeria
关键词
Autoregressive conditional duration model; Generalized gamma kernel; Mixing process; Recursive estimator; Stochastic volatility model;
D O I
10.1080/03610918.2024.2347930
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we consider the recursive generalized gamma (GG) kernel density estimator (KDE) for nonnegative dependent data from stationary alpha-mixing process. Asymptotic bias, variance and mean integrated squared error are provided. Simulation experiments from an autoregressive conditional duration model and a stochastic volatility model are conducted to compare the recursive GG KDE with non-recursive GG KDE. Two applications are provided for nonnegative time series data.
引用
收藏
页码:2976 / 2987
页数:12
相关论文
共 50 条