Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy

被引:32
|
作者
Vogelsang, Jan [1 ,2 ,6 ]
Hergert, Germann [1 ,2 ]
Wang, Dong [3 ,4 ]
Gross, Petra [1 ,2 ]
Lienau, Christoph [1 ,2 ,5 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Phys, D-26129 Oldenburg, Niedersachsen, Germany
[2] Carl von Ossietzky Univ Oldenburg, Ctr Interface Sci, D-26129 Oldenburg, Niedersachsen, Germany
[3] TU Ilmenau, Inst Werkstofftech, D-98693 Ilmenau, Thuringen, Germany
[4] TU Ilmenau, Inst Mikro & Nanotechnol, D-98693 Ilmenau, Thuringen, Germany
[5] Carl von Ossietzky Univ Oldenburg, Forschungszentrum Neurosensor, D-26129 Oldenburg, Niedersachsen, Germany
[6] Lund Univ, Dept Phys, Box 118, S-22100 Lund, Sweden
来源
关键词
SURFACE-PLASMONS; SINGLE-MOLECULE; LIGHT-SOURCE; FEW-CYCLE; FIELD; DRIVEN; COHERENCE; DYNAMICS; NANOSTRUCTURES; PHOTOEMISSION;
D O I
10.1038/s41377-018-0054-5
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Observing the motion of electrons on their natural nanometer length and femtosecond time scales is a fundamental goal of and an open challenge for contemporary ultrafast science(1-5). At present, optical techniques and electron microscopy mostly provide either ultrahigh temporal or spatial resolution, and microscopy techniques with combined space-time resolution require further development(6-11). In this study, we create an ultrafast electron source via plasmon nanofocusing on a sharp gold taper and implement this source in an ultrafast point-projection electron microscope. This source is used in an optical pump-electron probe experiment to study ultrafast photoemissions from a nanometer-sized plasmonic antenna(12-15). We probe the real space motion of the photoemitted electrons with a 20-nm spatial resolution and a 25-fs time resolution and reveal the deflection of probe electrons by residual holes in the metal. This is a step toward time-resolved microscopy of electronic motion in nanostructures.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Observing charge separation in nanoantennas via ultrafast point-projection electron microscopy
    Jan Vogelsang
    Germann Hergert
    Dong Wang
    Petra Groß
    Christoph Lienau
    [J]. Light: Science & Applications, 7
  • [2] Plasmon-driven ultrafast point-projection electron microscopy
    Vogelsang, Jan
    Hergert, Germann
    Woeste, Andreas
    Wang, Dong
    Gross, Petra
    Lienau, Christoph
    [J]. XXI INTERNATIONAL CONFERENCE ON ULTRAFAST PHENOMENA 2018 (UP 2018), 2019, 205
  • [3] POINT-PROJECTION X-RAY MICROSCOPY
    ANDERTON, H
    [J]. SCIENCE PROGRESS, 1967, 55 (219) : 337 - &
  • [4] Three-dimensional point-projection microscopy
    Shtremel', MA
    Chizhov, VI
    Zhevnerova, OV
    [J]. INDUSTRIAL LABORATORY, 1999, 65 (10): : 650 - 653
  • [5] Visualization of Photocurrents in Nanoobjects by Ultrafast Low-Energy Electron Point-Projection Imaging
    Mueller, M.
    Paarmann, A.
    Ernstorfer, R.
    [J]. ULTRAFAST PHENOMENA XIX, 2015, 162 : 667 - 670
  • [6] POINT-PROJECTION X-RAY MICROSCOPY OF POLYMERS
    NEWMAN, SB
    [J]. JOURNAL OF APPLIED PHYSICS, 1963, 34 (08) : 2524 - &
  • [7] Femtosecond few- to single-electron point-projection microscopy for nanoscale dynamic imaging
    Bainbridge, A. R.
    Myers, C. W. Barlow
    Bryan, W. A.
    [J]. STRUCTURAL DYNAMICS-US, 2016, 3 (02):
  • [8] Probing Transient Localized Electromagnetic Fields Using Low- Energy Point-Projection Electron Microscopy
    Hergert, Germann
    Woeste, Andreas
    Vogelsang, Jan
    Quenzel, Thomas
    Wang, Dong
    Gross, Petra
    Lienau, Christoph
    [J]. ACS PHOTONICS, 2021, 8 (09) : 2573 - 2580
  • [9] EXPERIMENTAL LOW-VOLTAGE POINT-PROJECTION MICROSCOPY AND ITS POSSIBILITIES
    SPENCE, JCH
    QIAN, W
    MELMED, AJ
    [J]. ULTRAMICROSCOPY, 1993, 52 (3-4) : 473 - 477
  • [10] A coherent photofield electron source for fast diffractive and point-projection imaging
    Spence, J. C. H.
    Vecchione, T.
    Weierstall, U.
    [J]. PHILOSOPHICAL MAGAZINE, 2010, 90 (35-36) : 4691 - 4702