Next-Generation Sequencing Workflow for NSCLC Critical Samples Using a Targeted Sequencing Approach by Ion Torrent PGM™ Platform

被引:32
|
作者
Vanni, Irene [1 ]
Coco, Simona [1 ]
Truini, Anna [1 ,2 ]
Rusmini, Marta [3 ]
Dal Bello, Maria Giovanna [1 ]
Alama, Angela [1 ]
Banelli, Barbara [4 ]
Mora, Marco [5 ]
Rijavec, Erika [1 ]
Barletta, Giulia [1 ]
Genova, Carlo [1 ]
Biello, Federica [1 ]
Maggioni, Claudia [1 ]
Grossi, Francesco [1 ]
机构
[1] IRCCS AOU San Martino IST, Natl Inst Canc Res, Lung Canc Unit, I-16132 Genoa, Italy
[2] Univ Genoa, IRCCS AOU San Martino IST, Natl Inst Canc Res, Dept Internal Med & Med Specialties DIMI, I-16132 Genoa, Italy
[3] Giannina Gaslini Inst, IRCCS, Mol Genet Lab, I-16148 Genoa, Italy
[4] IRCCS AOU San Martino IST, Natl Inst Canc Res, Lab Tumor Epigenet, I-16132 Genoa, Italy
[5] IRCCS AOU San Martino IST, Natl Inst Canc Res, Dept Pathol, I-16132 Genoa, Italy
关键词
next-generation sequencing; NGS workflow; NSCLC; Ion Torrent PGM; FFPE; cfDNA; WHOLE-GENOME AMPLIFICATION; CELL LUNG-CANCER; INTRATUMOR HETEROGENEITY; DNA QUANTIFICATION; MUTATION DETECTION; GENE-MUTATIONS; POLYMORPHISMS; PCR; PERFORMANCE; STANDARDS;
D O I
10.3390/ijms161226129
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Next-generation sequencing (NGS) is a cost-effective technology capable of screening several genes simultaneously; however, its application in a clinical context requires an established workflow to acquire reliable sequencing results. Here, we report an optimized NGS workflow analyzing 22 lung cancer-related genes to sequence critical samples such as DNA from formalin-fixed paraffin-embedded (FFPE) blocks and circulating free DNA (cfDNA). Snap frozen and matched FFPE gDNA from 12 non-small cell lung cancer (NSCLC) patients, whose gDNA fragmentation status was previously evaluated using a multiplex PCR-based quality control, were successfully sequenced with Ion Torrent PGM (TM). The robust bioinformatic pipeline allowed us to correctly call both Single Nucleotide Variants (SNVs) and indels with a detection limit of 5%, achieving 100% specificity and 96% sensitivity. This workflow was also validated in 13 FFPE NSCLC biopsies. Furthermore, a specific protocol for low input gDNA capable of producing good sequencing data with high coverage, high uniformity, and a low error rate was also optimized. In conclusion, we demonstrate the feasibility of obtaining gDNA from FFPE samples suitable for NGS by performing appropriate quality controls. The optimized workflow, capable of screening low input gDNA, highlights NGS as a potential tool in the detection, disease monitoring, and treatment of NSCLC.
引用
收藏
页码:28765 / 28782
页数:18
相关论文
共 50 条
  • [31] Next-Generation Ion Torrent Sequencing of Drug Resistance Mutations in Mycobacterium tuberculosis Strains
    Daum, Luke T.
    Rodriguez, John D.
    Worthy, Sue A.
    Ismail, Nazir A.
    Omar, Shaheed V.
    Dreyer, Andries W.
    Fourie, P. Bernard
    Hoosen, Anwar A.
    Chambers, James P.
    Fischer, Gerald W.
    [J]. JOURNAL OF CLINICAL MICROBIOLOGY, 2012, 50 (12) : 3831 - 3837
  • [32] EVALUATION OF LONG READ SEQUENCING CHEMISTRY FOR NEXT GENERATION SEQUENCING ON THE PGM PLATFORM.
    Zhao, Bin
    Bialozynski, Carolyn
    Shi, Joel
    Radick, Marie
    Conradson, Scott
    Dinauer, David
    [J]. HUMAN IMMUNOLOGY, 2013, 74 : 138 - 138
  • [33] Development of ion torrent-based targeted next-generation sequencing panel for identification of animal species in pet foods
    Kattoor, J. J.
    Guag, J.
    Nemser, S. M.
    Wilkes, R. P.
    [J]. RESEARCH IN VETERINARY SCIENCE, 2024, 167
  • [34] Targeted next-generation sequencing: microdroplet PCR approach for variant detection in research and clinical samples
    Huentelman, Matthew J.
    [J]. EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2011, 11 (04) : 347 - 349
  • [35] Highly Scalable and Automated Approach to Gut Microbiome Profiling and Quantification Using a New Ion Torrent Next-Generation Sequencing Assay
    Sarda, S.
    Merrill, D.
    Shin, H.
    McGeachy, A.
    Drews, B.
    Lee, W.
    Hoz De La Rastrollo, A.
    Castano Gonzalez, L.
    Rodrigo, M.
    Gottimukkala, R.
    Au-Young, J.
    Hyland, F.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2020, 22 (11): : S49 - S49
  • [36] INTEGRATED GLIOMA DIAGNOSTICS USING TARGETED NEXT-GENERATION SEQUENCING
    Petersen, Jeanette K.
    Boldt, Henning B.
    Sorensen, Mia
    Dahlrot, Rikke H.
    Hansen, Steinbjorn
    Burton, Mark
    Thomassen, Mads
    Kruse, Torben
    Poulsen, Frantz R.
    Andreasen, Lotte
    Hager, Henrik
    Ulhoi, Benedicte P.
    Lukacova, Slavka
    Reifenberger, Guido
    Kristensen, Bjarne
    [J]. NEURO-ONCOLOGY, 2019, 21 : 104 - 104
  • [37] Mutation Analysis from Biopsy and Cytology Samples Using the Therascreen, Pyromark, and Ion Torrent Next-Generation Sequencing Assays for EGFR Mutations
    Walker, K.
    Watson, L.
    Zreik, R.
    Rao, A.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2014, 16 (06): : 767 - 767
  • [38] Targeted next-generation sequencing in monogenic dyslipidemias
    Hegele, Robert A.
    Ban, Matthew R.
    Cao, Henian
    McIntyre, Adam D.
    Robinson, John F.
    Wang, Jian
    [J]. CURRENT OPINION IN LIPIDOLOGY, 2015, 26 (02) : 103 - 113
  • [39] Anchored multiplex FOR for targeted next-generation sequencing
    Zheng, Zongli
    Liebers, Matthew
    Zhelyazkova, Boryana
    Cao, Yi
    Panditi, Divya
    Lynch, Kerry D.
    Chen, Juxiang
    Robinson, Hayley E.
    Shim, Hyo Sup
    Chmielecki, Juliann
    Pao, William
    Engelman, Jeffrey A.
    Iafrate, A. John
    Le, Long Phi
    [J]. NATURE MEDICINE, 2014, 20 (12) : 1479 - 1484
  • [40] Tumor Clonality Determinations Using Targeted Next-Generation Sequencing
    Geurts-Giele, W. R.
    Atmodimedjo, P.
    Dubbink, H. J.
    Dinjens, W. N.
    [J]. JOURNAL OF MOLECULAR DIAGNOSTICS, 2013, 15 (06): : 919 - 919