General Type-2 Fuzzy Neural Network with Hybrid Learning for Function Approximation

被引:18
|
作者
Jeng, Wen-Hau Roger [1 ]
Yeh, Chi-Yuan [1 ]
Lee, Shie-Jue [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung 804, Taiwan
关键词
D O I
10.1109/FUZZY.2009.5277250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel Takagi-Sugeno-Kang (TSK) type fuzzy neural network which uses general type-2 fuzzy sets in a type-2 fuzzy logic system, called general type-2 fuzzy neural network (GT2FNN), is proposed for function approximation. The problems of constructing a GT2FNN include type reduction, structure identification, and parameter identification. An efficient strategy is proposed by using a-cuts to decompose a general type-2 fuzzy set into several interval type-2 fuzzy, sets to solve the type reduction problem. Incremental similarity-based fuzzy clustering and linear least squares regression are combined to solve the structure identification problem. Regarding the parameter identification, a hybrid learning algorithm (HLA) which combines particle swarm optimization (PSO) and recursive least squares (RLS) estimator is proposed for refining the antecedent and consequent parameters, respectively, of fuzzy rules. Simulation results show that the resulting networks obtained are robust against outliers.
引用
收藏
页码:1534 / 1539
页数:6
相关论文
共 50 条
  • [21] Type-2 Fuzzy Clustering and a Type-2 Fuzzy Inference Neural Network for the Prediction of Short-Term Interest Rates
    Enke, David
    Mehdiyev, Nijat
    [J]. COMPLEX ADAPTIVE SYSTEMS: EMERGING TECHNOLOGIES FOR EVOLVING SYSTEMS: SOCIO-TECHNICAL, CYBER AND BIG DATA, 2013, 20 : 115 - 120
  • [22] An optimal general type-2 fuzzy controller for Urban Traffic Network
    Khooban, Mohammad Hassan
    Vafamand, Navid
    Liaghat, Alireza
    Dragicevic, Tomislav
    [J]. ISA TRANSACTIONS, 2017, 66 : 335 - 343
  • [23] A type-2 fuzzy wavelet neural network for system identification and control
    Abiyev, Rahib H.
    Kaynak, Okyay
    Kayacan, Erdal
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (07): : 1658 - 1685
  • [24] Cooperative strategy for constructing interval type-2 fuzzy neural network
    Han, Hong-Gui
    Li, Jia-Ming
    Wu, Xiao-Long
    Qiao, Jun-Fei
    [J]. NEUROCOMPUTING, 2019, 365 (249-260) : 249 - 260
  • [25] A Type-2 Fuzzy Wavelet Neural Network for Time Series Prediction
    Abiyev, Rahib H.
    [J]. TRENDS IN APPLIED INTELLIGENT SYSTEMS, PT III, PROCEEDINGS, 2010, 6098 : 518 - 527
  • [26] Type-2 Fuzzy Neural Network Controller for a class of Nonlinear Systems
    Farahani, Hossein Moradi
    Askari, Javad
    Zekri, Maryam
    Kamali, Marzieh
    [J]. 2013 21ST IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2013,
  • [27] Type-2 fuzzy activation function for multilayer feedforward neural networks
    Karaköse, M
    Akin, E
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOLS 1-7, 2004, : 3762 - 3767
  • [28] HYBRID LEARNING ALGORITHM FOR INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS
    Mendez, G. M.
    Leduc, L. A.
    [J]. CONTROL AND INTELLIGENT SYSTEMS, 2006, 34 (03)
  • [29] Fast Learning Method of Interval Type-2 Fuzzy Neural Networks
    Olczyk, Damian
    Markowska-Kaczmar, Urszula
    [J]. 2014 14TH UK WORKSHOP ON COMPUTATIONAL INTELLIGENCE (UKCI), 2014, : 134 - 139
  • [30] A Self-Evolving Interval Type-2 Fuzzy Neural Network With Online Structure and Parameter Learning
    Juang, Chia-Feng
    Tsao, Yu-Wei
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (06) : 1411 - 1424