General Type-2 Fuzzy Neural Network with Hybrid Learning for Function Approximation

被引:18
|
作者
Jeng, Wen-Hau Roger [1 ]
Yeh, Chi-Yuan [1 ]
Lee, Shie-Jue [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung 804, Taiwan
关键词
D O I
10.1109/FUZZY.2009.5277250
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel Takagi-Sugeno-Kang (TSK) type fuzzy neural network which uses general type-2 fuzzy sets in a type-2 fuzzy logic system, called general type-2 fuzzy neural network (GT2FNN), is proposed for function approximation. The problems of constructing a GT2FNN include type reduction, structure identification, and parameter identification. An efficient strategy is proposed by using a-cuts to decompose a general type-2 fuzzy set into several interval type-2 fuzzy, sets to solve the type reduction problem. Incremental similarity-based fuzzy clustering and linear least squares regression are combined to solve the structure identification problem. Regarding the parameter identification, a hybrid learning algorithm (HLA) which combines particle swarm optimization (PSO) and recursive least squares (RLS) estimator is proposed for refining the antecedent and consequent parameters, respectively, of fuzzy rules. Simulation results show that the resulting networks obtained are robust against outliers.
引用
收藏
页码:1534 / 1539
页数:6
相关论文
共 50 条
  • [1] Intelligent Control Using an Interval Type-2 Fuzzy Neural Network with a Hybrid Learning Algorithm
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    Martinez, Luis G.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 893 - +
  • [2] Hybrid learning algorithm for interval type-2 fuzzy neural networks
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    [J]. GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 157 - 162
  • [3] A New Type of Fuzzy Membership Function Designed for Interval Type-2 Fuzzy Neural Network
    [J]. Wang, Jiajun (wangjiajun@hdu.edu.cn), 2017, Science Press (43):
  • [4] General Type-2 Radial Basis Function Neural Network: A Data-Driven Fuzzy Model
    Rubio-Solis, Adrian
    Melin, Patricia
    Martinez-Hernandez, Uriel
    Panoutsos, George
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (02) : 333 - 347
  • [5] A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    [J]. INFORMATION SCIENCES, 2009, 179 (13) : 2175 - 2193
  • [6] Antiforgetting Incremental Learning Algorithm for Interval Type-2 Fuzzy Neural Network
    Sun, Chenxuan
    Han, Honggui
    Wu, Xiaolong
    Yang, Hongyan
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (04) : 1938 - 1950
  • [7] Data-Based System Modeling Using a Type-2 Fuzzy Neural Network with a Hybrid Learning Algorithm
    Yeh, Chi-Yuan
    Jeng, Wen-Hau Roger
    Lee, Shie-Jue
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (12): : 2296 - 2309
  • [8] General Type-2 Fuzzy Membership Function Design and its Application to Neural Networks
    Shim, Eun-A
    Rhee, Frank Chung-Hoon
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 479 - 483
  • [9] Evolving Type-2 Recurrent Fuzzy Neural Network
    Pratama, Mahardhika
    Lughofer, Edwin
    Er, Meng Joo
    Rahayu, Wenny
    Dillon, Tharam
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1841 - 1848
  • [10] Application of Interval Type-2 Subsethood Neural Fuzzy Inference System in Control and Function Approximation
    Sumati, Vuppuluri
    Patvardhan, C.
    Paul, Sandeep
    Singh, Lotika
    Swarup, V. Mehar
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2017,