Size and area of square lattice polygons

被引:14
|
作者
Jensen, I [1 ]
机构
[1] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
来源
关键词
D O I
10.1088/0305-4470/33/18/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the finite lattice method to calculate the radius of gyration, the first and second area-weighted moments of self-avoiding polygons on the square lattice. The series have been calculated for polygons up to perimeter 82. Analysis of the series yields high accuracy estimates confirming theoretical predictions for the value of the size exponent, nu = 3/4, and certain universal amplitude combinations. Furthermore, a detailed analysis of the asymptotic form of the series coefficients provide the firmest evidence to date for the existence of a correction-to-scaling exponent, Delta = 3/2.
引用
收藏
页码:3533 / 3543
页数:11
相关论文
共 50 条
  • [31] MAXIMIZING THE AREA OF POLYGONS VIA QUASICYCLIC POLYGONS
    Anatriello, Giuseppina
    Vincenzi, Giovanni
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2024, 61 (01) : 43 - 58
  • [32] Lattice polygons with two interior lattice points
    X. Wei
    R. Ding
    [J]. Mathematical Notes, 2012, 91 : 868 - 877
  • [33] Lattice polygons with two interior lattice points
    Wei, X.
    Ding, R.
    [J]. MATHEMATICAL NOTES, 2012, 91 (5-6) : 868 - 877
  • [34] Area of reduced polygons
    Lassak, M
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 67 (3-4): : 349 - 354
  • [35] Foldable Triangulations of Lattice Polygons
    Joswig, Michael
    Ziegler, Guenter M.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (08): : 706 - 710
  • [36] An extremal property of lattice polygons
    Bliznyakov, Nikolai
    Kondratyev, Stanislav
    [J]. PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 205 - 248
  • [37] Lattice polygons and the number 12
    Poonen, B
    Rodriguez-Villegas, F
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (03): : 238 - 250
  • [38] Tiling Polygons with Lattice Triangles
    Steve Butler
    Fan Chung
    Ron Graham
    Miklós Laczkovich
    [J]. Discrete & Computational Geometry, 2010, 44 : 896 - 903
  • [39] The area of rhumb polygons
    Karney, Charles F. F.
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 2024,
  • [40] AREA COMPUTATION OF POLYGONS
    VANGEIN, WA
    GILLISSEN, I
    [J]. INTERNATIONAL HYDROGRAPHIC REVIEW, 1993, 70 (01): : 23 - 35