Multi-document Summarization using Evolutionary Multi-objective Optimization

被引:6
|
作者
Jung, Chihoon [1 ]
Datta, Rituparna [1 ]
Segev, Aviv [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, KSE, Daejeon, South Korea
[2] Korea Adv Inst Sci & Technol, CS, Daejeon, South Korea
关键词
Text Summarization; Evolutionary Multi-objective Optimization; ALGORITHM;
D O I
10.1145/3067695.3082040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text summarization aims to generate condensed summary from a large set of documents on the same topic. We formulate text summarization task as a multi-objective optimization problem by defining information coverage and diversity as two conflicting objective functions. The result solutions represent summaries that ensure the maximum coverage of the original document and the diversity of the sentences in the summary among each other. The initial experiment using DUC2002 multi-document summarization task dataset and ROUGE evaluation metric shows that the proposed method generates high ROUGE score summaries and is comparable to the state-of-the-art summarization methods.
引用
收藏
页码:31 / 32
页数:2
相关论文
共 50 条
  • [41] MULTI-DOCUMENT SUMMARIZATION OF EVALUATIVE TEXT
    Carenini, Giuseppe
    Cheung, Jackie Chi Kit
    Pauls, Adam
    [J]. COMPUTATIONAL INTELLIGENCE, 2013, 29 (04) : 545 - 576
  • [42] Multi-Document Summarization by Information Distance
    Long, Chong
    Huang, Minlie
    Zhu, Xiaoyan
    Li, Ming
    [J]. 2009 9TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2009, : 866 - +
  • [43] Causal Maps for Multi-Document Summarization
    Strelnikoff, Sasha
    Jammalamadaka, Aruna
    Warmsley, Dana
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4437 - 4445
  • [44] Extractive multi-document text summarization using dolphin swarm optimization approach
    Atul Kumar Srivastava
    Dhiraj Pandey
    Alok Agarwal
    [J]. Multimedia Tools and Applications, 2021, 80 : 11273 - 11290
  • [45] A novel approach to multi-document summarization
    Qiu, Li-Qing
    Pang, Bin
    Lin, Sai-Qun
    Chen, Peng
    [J]. DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 187 - +
  • [46] Hierarchical Transformers for Multi-Document Summarization
    Liu, Yang
    Lapata, Mirella
    [J]. 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5070 - 5081
  • [47] Scientific document summarization in multi-objective clustering framework
    Mishra, Santosh Kumar
    Saini, Naveen
    Saha, Sriparna
    Bhattacharyya, Pushpak
    [J]. APPLIED INTELLIGENCE, 2022, 52 (02) : 1520 - 1543
  • [48] Scientific document summarization in multi-objective clustering framework
    Santosh Kumar Mishra
    Naveen Saini
    Sriparna Saha
    Pushpak Bhattacharyya
    [J]. Applied Intelligence, 2022, 52 : 1520 - 1543
  • [49] Hierarchical Summarization: Scaling Up Multi-Document Summarization
    Christensen, Janara
    Soderland, Stephen
    Bansal, Gagan
    Mausam
    [J]. PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1, 2014, : 902 - 912
  • [50] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    [J]. SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891