A cooperative conjugate gradient method for linear systems permitting efficient multi-thread implementation

被引:0
|
作者
Bhaya, Amit [1 ]
Bliman, Pierre-Alexandre [2 ,3 ]
Niedu, Guilherme [4 ]
Pazos, Fernando A. [5 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Elect Engn, Rio De Janeiro, RJ, Brazil
[2] UPMC Univ Paris 06, Inria, Sorbonne Univ, Lab JL Lions,UMR CNRS 7598, Paris, France
[3] Fundacao Getulio Vargas, Escola Matemat Aplicada, Rio De Janeiro, RJ, Brazil
[4] Petrobras SA, Rio De Janeiro, Brazil
[5] Univ Estado Rio De Janeiro, Dept Elect & Telecommun Engn, Rio De Janeiro, RJ, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 02期
关键词
Discrete linear systems; Iterative methods; Conjugate gradient algorithm; Cooperative algorithms; HYBRID PROCEDURES; ALGORITHM;
D O I
10.1007/s40314-016-0416-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper revisits, in a multi-thread context, the so-called multi-parameter or block conjugate gradient (B-CG) methods, first proposed as sequential algorithms by O'Leary and Brezinski, for the solution of the linear system Ax = b, for an n-dimensional symmetric positive definite matrix A. Instead of the scalar parameters of the classical CG algorithm, which minimizes a scalar functional at each iteration, multiple descent and conjugate directions are updated simultaneously. Implementation involves the use of multiple threads and the algorithm is referred to as cooperative CG (CCG) to emphasize that each thread now uses information that comes from the other threads. It is shown that for a sufficiently large matrix dimension n, the use of an optimal number of threads results in a worst case flop count of O (n(7/3)) in exact arithmetic. Numerical experiments on a multi-core, multi-thread computer, for synthetic and real matrices, illustrate the theoretical results.
引用
收藏
页码:1601 / 1628
页数:28
相关论文
共 50 条
  • [41] Efficient Swap Protocol of Remote Memory Paging for Out-of-Core Multi-thread Applications
    Midorikawa, Hiroko
    Kitagawa, Kenji
    Ohura, Hikari
    2017 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2017, : 637 - 638
  • [42] A parallel implementation of Chebyshev preconditioned conjugate gradient method
    Akçadogan, Ç
    Dag, H
    SECOND INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING, PROCEEDINGS, 2003, : 1 - 8
  • [43] Parallel Implementation of Conjugate Gradient Method on Graphics Processors
    Wozniak, Marcin
    Olas, Tomasz
    Wyrzykowski, Roman
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT I, 2010, 6067 : 125 - 135
  • [44] ON THE FORMULATION AND IMPLEMENTATION OF A CONJUGATE-GRADIENT FFT METHOD
    PETERS, TJ
    VOLAKIS, JL
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1989, 3 (08) : 675 - 696
  • [45] A new version of conjugate gradient method parallel implementation
    Bycul, RP
    Jordan, A
    Cichomski, M
    PAR ELEC 2002: INTERNATIONAL CONFERENCE ON PARALLEL COMPUTING IN ELECTRICAL ENGINEERING, 2002, : 318 - 322
  • [46] Conjugate Gradient Implementation Method of Multistage Wiener Filter
    Wen, Xiaoqin
    Wang, Qiaoqiao
    You, Linru
    Han, Chongzhao
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 6825 - 6829
  • [47] Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and GPUs
    Schoenherr, M.
    Kucher, K.
    Geier, M.
    Stiebler, M.
    Freudiger, S.
    Krafczyk, M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (12) : 3730 - 3743
  • [48] EFFICIENT IMPLEMENTATION OF A CLASS OF PRECONDITIONED CONJUGATE-GRADIENT METHODS
    EISENSTAT, SC
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (01): : 1 - 4
  • [49] EXPLICITLY PRECONDITIONED CONJUGATE-GRADIENT METHOD FOR THE SOLUTION OF UNSYMMETRIC LINEAR-SYSTEMS
    KAPORIN, IE
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 44 (1-4) : 169 - 187
  • [50] An augmented conjugate gradient method for solving consecutive symmetric positive definite linear systems
    Erhel, J
    Guyomarc'h, F
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) : 1279 - 1299