INFERENCE ON CAUSAL EFFECTS IN A GENERALIZED REGRESSION KINK DESIGN

被引:141
|
作者
Card, David [1 ,2 ,3 ]
Lee, David S. [2 ,4 ]
Pei, Zhuan [5 ]
Weber, Andrea [3 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Econ, 549 Evans Hall 3880, Berkeley, CA 94720 USA
[2] NBER, Cambridge, MA 02138 USA
[3] IZA, Bonn, Germany
[4] Princeton Univ, Dept Econ, 3 Nassau Hall, Princeton, NJ 08544 USA
[5] Cornell Univ, Dept Policy Anal & Management, 134 MVR Hall, Ithaca, NY 14853 USA
[6] Univ Mannheim, Dept Econ, L 7,3-5, D-68131 Mannheim, Germany
基金
奥地利科学基金会;
关键词
Regression discontinuity design; regression kink design; treatment effects; nonseparable models; nonparametric estimation; UNEMPLOYMENT-INSURANCE; DISCONTINUITY DESIGNS; MODEL ESTIMATION; IDENTIFICATION; EQUATIONS;
D O I
10.3982/ECTA11224
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider nonparametric identification and estimation in a nonseparable model where a continuous regressor of interest is a known, deterministic, but kinked function of an observed assignment variable. We characterize a broad class of models in which a sharp "Regression Kink Design" (RKD or RK Design) identifies a readily interpretable treatment-on-the-treated parameter (Florens, Heckman, Meghir, and Vytlacil (2008)). We also introduce a "fuzzy regression kink design" generalization that allows for omitted variables in the assignment rule, noncompliance, and certain types of measurement errors in the observed values of the assignment variable and the policy variable. Our identifying assumptions give rise to testable restrictions on the distributions of the assignment variable and predetermined covariates around the kink point, similar to the restrictions delivered by Lee (2008) for the regression discontinuity design. Using a kink in the unemployment benefit formula, we apply a fuzzy RKD to empirically estimate the effect of benefit rates on unemployment durations in Austria.
引用
收藏
页码:2453 / 2483
页数:31
相关论文
共 50 条
  • [31] Relationship of causal effects in a causal chain and related inference
    Geng, Z
    He, YB
    Wang, XL
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (05): : 730 - 740
  • [32] Relationship of causal effects in a causal chain and related inference
    GENG Zhi
    [J]. Science China Mathematics, 2004, (05) : 730 - 740
  • [33] INFERENCE FOR GENERALIZED PARTIAL FUNCTIONAL LINEAR REGRESSION
    Li, Ting
    Zhu, Zhongyi
    [J]. STATISTICA SINICA, 2020, 30 (03) : 1379 - 1397
  • [34] QUANTILE TREATMENT EFFECTS IN REGRESSION KINK DESIGNS
    Chen, Heng
    Chiang, Harold D.
    Sasaki, Yuya
    [J]. ECONOMETRIC THEORY, 2020, 36 (06) : 1167 - 1191
  • [35] Identifying Causal Marketing Mix Effects Using a Regression Discontinuity Design
    Hartmann, Wesley
    Nair, Harikesh S.
    Narayanan, Sridhar
    [J]. MARKETING SCIENCE, 2011, 30 (06) : 1079 - 1097
  • [36] On the Use of Two-Way Fixed Effects Regression Models for Causal Inference with Panel Data
    Imai, Kosuke
    Kim, In Song
    [J]. POLITICAL ANALYSIS, 2021, 29 (03) : 405 - 415
  • [37] Causation and causal inference for genetic effects
    Stijn Vansteelandt
    Christoph Lange
    [J]. Human Genetics, 2012, 131 : 1665 - 1676
  • [38] Causal Inference for Vaccine Effects on Infectiousness
    Halloran, M. Elizabeth
    Hudgens, Michael G.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (02):
  • [39] Causation and causal inference for genetic effects
    Vansteelandt, Stijn
    Lange, Christoph
    [J]. HUMAN GENETICS, 2012, 131 (10) : 1665 - 1676
  • [40] Causal Inference in Threshold Regression and the Neural Network Extension (TRNN)
    Chen, Yiming
    Smith, Paul J.
    Lee, Mei-Ling Ting
    [J]. STATS, 2023, 6 (02): : 552 - 575