Correlated Log-Normal Random Variables under a Multiscale Volatility Model

被引:0
|
作者
Ma, Yong-Ki [1 ]
机构
[1] Kongju Natl Univ, Dept Appl Math, Gongju Si 32588, Chungcheongnam, South Korea
基金
新加坡国家研究基金会;
关键词
DIFFUSIONS; OPTIONS; SUMS;
D O I
10.1155/2021/5916312
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The study focuses on extending the fast mean-reversion volatility, which was developed by the author in a previous work, to the multiscale volatility model so that it can express a well-separated time scale. The leading-order term and first-order correction terms are analytically computed using the perturbation theory based on the Lie-Trotter operator splitting method. Finally, the study is concluded by deriving the numerical results that further validate the effectiveness of the model.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Predicting future purchases with the Poisson log-normal model
    Giang Trinh
    Cam Rungie
    Malcolm Wright
    Carl Driesener
    John Dawes
    [J]. Marketing Letters, 2014, 25 : 219 - 234
  • [42] Resistivity Logging in a Multiscale Isotropic Porous Medium with Log-Normal Distributed Conductivity
    Kurochkina, E. P.
    Soboleva, O. N.
    Epov, M. I.
    [J]. PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2008, 5 (03) : 223 - 226
  • [43] Log-normal approximation of the equity premium in the production model
    Heer, Burkhard
    Maussner, Alfred
    [J]. APPLIED ECONOMICS LETTERS, 2012, 19 (05) : 407 - 412
  • [44] A STABLE, MULTIVARIATE EXTENSION OF THE LOG-NORMAL SURVIVAL MODEL
    GAMEL, JW
    MCLEAN, IW
    [J]. COMPUTERS AND BIOMEDICAL RESEARCH, 1994, 27 (02): : 148 - 155
  • [45] A Generalized Log-Normal Model for Grouped Survival Data
    Silveira, Liciana V. A.
    Colosimo, Enrico A.
    Passos, Jose Raimundo de S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (15) : 2659 - 2666
  • [46] Phase transition in a log-normal Markov functional model
    Pirjol, Dan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (01)
  • [47] RESPONSE OF AN INSECT PHOTORECEPTOR - A SIMPLE LOG-NORMAL MODEL
    PAYNE, R
    HOWARD, J
    [J]. NATURE, 1981, 290 (5805) : 415 - 416
  • [48] Median estimation of chemical constituents for sampling on two occasions under a log-normal model
    Kondylis, Athanassios
    [J]. BIOMETRICAL JOURNAL, 2015, 57 (05) : 914 - 929
  • [49] Improved approximate confidence intervals for the mean of a log-normal random variable
    Taylor, DJ
    Kupper, LL
    Muller, KE
    [J]. STATISTICS IN MEDICINE, 2002, 21 (10) : 1443 - 1459
  • [50] On the Behavior of Two Types of Expectations of a Random Process with Log-normal Distribution
    Sukiasyan, H. S.
    Alaei, M. E.
    [J]. JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2019, 54 (05): : 313 - 318