Numerical Approach for Delay Volterra Integro-Differential Equation
被引:0
|
作者:
Baharum, Nur Auni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor Darul, MalaysiaUniv Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor Darul, Malaysia
Baharum, Nur Auni
[1
]
论文数: 引用数:
h-index:
机构:
Majid, Zanariah Abdul
[1
,2
]
Senu, Norazak
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor Darul, Malaysia
Univ Putra Malaysia, Fac Sci, Dept Math & Stat, Upm Serdang 43400, Selangor Darul, MalaysiaUniv Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor Darul, Malaysia
Senu, Norazak
[1
,2
]
Rosali, Haliza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor Darul, Malaysia
Univ Putra Malaysia, Fac Sci, Dept Math & Stat, Upm Serdang 43400, Selangor Darul, MalaysiaUniv Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor Darul, Malaysia
Rosali, Haliza
[1
,2
]
机构:
[1] Univ Putra Malaysia, Inst Math Res, Upm Serdang 43400, Selangor Darul, Malaysia
[2] Univ Putra Malaysia, Fac Sci, Dept Math & Stat, Upm Serdang 43400, Selangor Darul, Malaysia
The delay integro-differential equation for the Volterra type has been solved by using the two-point multistep block (2PBM) method with constant step-size. The proposed block method of order three is formulated using Taylor expansion and will simultaneously approximate the numerical solution at two points. The 2PBM method is developed by combining the predictor and corrector formulae in the PECE mode. The predictor formulae are explicit, while the corrector formulae are implicit. The algorithm for the approximate solutions were constructed and analyzed using the 2PBM method with Newton-Cotes quadrature rules. This paper focused on constant and pantograph delay types, and the previous values are used to interpolate the delay solutions. Moreover, the studies also carried out on the stability analysis of the proposed method. Some numerical results are tested to validate the competency of the multistep block method with quadrature rule approach.
机构:
Univ Tun Hussein Onn Malaysia, Dept Math & Stat, Batu Pahat 86400, Johor, MalaysiaUniv Tun Hussein Onn Malaysia, Dept Math & Stat, Batu Pahat 86400, Johor, Malaysia
Loh, Jian Rong
Phang, Chang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tun Hussein Onn Malaysia, Dept Math & Stat, Batu Pahat 86400, Johor, MalaysiaUniv Tun Hussein Onn Malaysia, Dept Math & Stat, Batu Pahat 86400, Johor, Malaysia
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
Zheng, Weishan
Chen, Yanping
论文数: 0引用数: 0
h-index: 0
机构:
S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R ChinaS China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China