Surface/interface effects on the formation of misfit dislocation in a core-shell nanowire

被引:23
|
作者
Enzevaee, C. [1 ]
Gutkin, M. Yu [2 ,3 ,4 ]
Shodja, H. M. [1 ,5 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, Tehran 11559313, Iran
[2] Russian Acad Sci, Inst Problems Mech Engn, St Petersburg 199178, Russia
[3] St Petersburg State Polytech Univ, Dept Phys Mat Strength & Plast, St Petersburg 195251, Russia
[4] St Petersburg State Univ, Dept Theory Elast, St Petersburg 198504, Russia
[5] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Tehran 111559161, Iran
关键词
edge dislocation; misfit dislocation; misfit accommodation; core-shell nanowire; surface elasticity; interface elasticity; SIZE-DEPENDENT INTERACTION; SCREW DISLOCATION; EDGE DISLOCATION; SURFACE STRESS; INTERFACE STRESS; ELASTIC STATE; INHOMOGENEITY; ENERGY; HETEROSTRUCTURES; INCLUSIONS;
D O I
10.1080/14786435.2013.856527
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The misfit strain within the core of a two-phase free-standing core-shell nanowire resulting in the generation of an edge misfit dislocation or an edge misfit dislocation dipole at the core-shell interface is considered theoretically within both the classical and surface/interface elasticity approaches. The critical conditions for the misfit dislocation generation are studied and discussed in detail with special attention to the non-classical surface/interface effect. It is shown that this effect is significant for fine cores of radius smaller than roughly 20 interatomic distances. The positive and negative surface/interface Lame constants mostly make the generation of the misfit dislocation easier and harder, respectively. Moreover, the positive (negative) residual surface/interface tensions mostly make the generation of the misfit dislocation harder (easier). The formation of individual misfit dislocation is energetically more preferential in finer two-phase nanowires, while the formation of misfit dislocation dipole is more expectable in the coarser ones.
引用
收藏
页码:492 / 519
页数:28
相关论文
共 50 条
  • [31] Core-shell nanowire serves as heat cable
    Liu, Yue-Yang
    Zhou, Wu-Xing
    Tang, Li-Ming
    Chen, Ke-Qiu
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (26)
  • [32] Core-shell nanowire electrodeposition for advanced photovoltaics
    Menke, Erik
    Ghosh, Somnath
    Hujdic, Justin
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [33] Core-shell silicon nanowire solar cells
    M. M. Adachi
    M. P. Anantram
    K. S. Karim
    [J]. Scientific Reports, 3
  • [34] Core-shell silicon nanowire solar cells
    Adachi, M. M.
    Anantram, M. P.
    Karim, K. S.
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [35] Photon management with core-shell nanowire structures
    Lai, Kun-Yu
    Chang, Hung-Chih
    Dai, Yu-An
    He, Jr-Hau
    [J]. OPTICS EXPRESS, 2012, 20 (06): : A255 - A264
  • [36] Perovskite Core-Shell Nanowire Transistors: Interfacial Transfer Doping and Surface Passivation
    Meng, You
    Lai, Zhengxun
    Li, Fangzhou
    Wang, Wei
    Yip, Senpo
    Quan, Quan
    Bu, Xiuming
    Wang, Fei
    Bao, Yan
    Hosomi, Takuro
    Takahashi, Tsunaki
    Nagashima, Kazuki
    Yanagida, Takeshi
    Lu, Jian
    Ho, Johnny C.
    [J]. ACS NANO, 2020, 14 (10) : 12749 - 12760
  • [37] Epitaxial core-shell and core-multishell nanowire heterostructures
    Lauhon, LJ
    Gudiksen, MS
    Wang, CL
    Lieber, CM
    [J]. NATURE, 2002, 420 (6911) : 57 - 61
  • [38] Misfit stress relaxation in composite core-shell nanowires with parallelepiped cores using rectangular prismatic dislocation loops
    Krasnitckii, S. A.
    Kolomoetc, D. R.
    Smirnov, A. M.
    Gutkin, M. Yu
    [J]. 19TH RUSSIAN YOUTH CONFERENCE ON PHYSICS OF SEMICONDUCTORS AND NANOSTRUCTURES, OPTO- AND NANOELECTRONICS, 2018, 993
  • [39] Surface effects on a multilayer and multisublattice cubic nanowire with core/shell
    Jiang, Wei
    Li, Xiao-Xi
    Liu, Li-Mei
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 53 : 29 - 35
  • [40] Circular loops of misfit dislocations in decahedral core-shell nanoparticles
    Krauchanka, M. Yu.
    Krasnitckii, S. A.
    Gutkin, M. Yu.
    Kolesnikova, A. L.
    Romanov, A. E.
    [J]. SCRIPTA MATERIALIA, 2019, 167 : 81 - 85