Gauging non-Hermitian Hamiltonians

被引:13
|
作者
Jones, H. F. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
关键词
SYMMETRY;
D O I
10.1088/1751-8113/42/13/135303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We address the problem of coupling non-Hermitian systems, treated as fundamental rather than effective theories, to the electromagnetic field. In such theories the observables are not the x and p appearing in the Hamiltonian, but quantities X and P constructed by means of the metric operator. Following the analogous procedure of gauging a global symmetry in Hermitian quantum mechanics we find that the corresponding gauge transformation in X implies minimal substitution in the form P -> P - eA(X). We discuss how the relevant matrix elements governing electromagnetic transitions may be calculated in the special case of the Swanson Hamiltonian, where the equivalent Hermitian Hamiltonian h is local, and in the more generic example of the imaginary cubic interaction, where H is local but h is not.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Replica treatment of non-Hermitian disordered Hamiltonians
    Nishigaki, SM
    Kamenev, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (21): : 4571 - 4590
  • [32] Non-Hermitian quantum Hamiltonians with PT symmetry
    Jones-Smith, Katherine
    Mathur, Harsh
    PHYSICAL REVIEW A, 2010, 82 (04)
  • [33] CPT-Frames for Non-Hermitian Hamiltonians
    Cao Huai-Xin
    Guo Zhi-Hua
    Chen Zheng-Li
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (03) : 328 - 334
  • [34] Real eigenspectra in non-Hermitian multidimensional Hamiltonians
    Nanayakkara, A
    PHYSICS LETTERS A, 2002, 304 (3-4) : 67 - 72
  • [35] Evanescent Wave Approximation for Non-Hermitian Hamiltonians
    Militello, Benedetto
    Napoli, Anna
    ENTROPY, 2020, 22 (06)
  • [36] Topological Band Theory for Non-Hermitian Hamiltonians
    Shen, Huitao
    Zhen, Bo
    Fu, Liang
    PHYSICAL REVIEW LETTERS, 2018, 120 (14)
  • [37] Algebraic treatment of non-Hermitian quadratic Hamiltonians
    Francisco M. Fernández
    Journal of Mathematical Chemistry, 2020, 58 : 2094 - 2107
  • [38] Spatial confinement, non-Hermitian Hamiltonians and related problems
    Brian L Burrows
    Maurice Cohen
    The European Physical Journal D, 2021, 75
  • [39] The physical interpretation of non-Hermitian Hamiltonians and other observables
    Geyer, H. B.
    Heiss, W. D.
    Scholtz, F. G.
    CANADIAN JOURNAL OF PHYSICS, 2008, 86 (10) : 1195 - 1201
  • [40] Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
    Ndayiragije, F.
    Van Assche, W.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (50)