On the kth Laplacian eigenvalues of trees with perfect matchings

被引:6
|
作者
Li, Jianxi [1 ]
Shiu, Wai Chee [1 ]
Chang, An [2 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[2] Fuzhou Univ, Software Coll, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Tree; Laplacian eigenvalue; Perfect matchings; Bound;
D O I
10.1016/j.laa.2009.10.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T-n(+) be the set of all trees of order n with perfect matchings. In this paper, we prove that for any tree T is an element of T-n(+), its kth largest Laplacian eigenvalue mu(k)(T) satisfies mu(k)(T) = 2 when n = 2k, and mu(k)(T) <= [n/2k]+2+ root([n/2k](2)+4/2 when n not equal 2k. Moreover, this upper bound is sharp when n = 0(mod 2k). (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1036 / 1041
页数:6
相关论文
共 50 条
  • [41] On the sum of the two largest Laplacian eigenvalues of trees
    Guan, Mei
    Zhai, Mingqing
    Wu, Yongfeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, : 1 - 7
  • [42] Ordering trees with nearly perfect matchings by algebraic connectivity
    Li Zhang
    Yue Liu
    Chinese Annals of Mathematics, Series B, 2008, 29 : 71 - 84
  • [43] TREES WITH MAXIMUM SUM OF THE TWO LARGEST LAPLACIAN EIGENVALUES
    Zheng, Yirong
    Li, Jianxi
    Chang, Sarula
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 357 - 366
  • [44] Trees with 4 or 5 distinct normalized Laplacian eigenvalues
    Braga, Rodrigo O.
    Del-Vecchio, Renata R.
    Rodrigues, Virginia M.
    Trevisan, Vilinar
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 : 615 - 635
  • [45] Minimizing the Laplacian eigenvalues for trees with given domination number
    Feng, Lihua
    Yu, Guihai
    Li, Qiao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 419 (2-3) : 648 - 655
  • [46] TREES WITH FOUR AND FIVE DISTINCT SIGNLESS LAPLACIAN EIGENVALUES
    Taghvaee, F.
    Fath-Tabar, G. H.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2019, 25 (03) : 302 - 313
  • [47] ON THE NUMBER OF LAPLACIAN EIGENVALUES OF TREES SMALLER THAN TWO
    Zhou, Lingling
    Zhou, Bo
    Du, Zhibin
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (01): : 65 - 75
  • [48] Augmented Zagreb index of trees and unicyclic graphs with perfect matchings
    Sun, Xiaoling
    Gao, Yubin
    Du, Jianwei
    Xu, Lan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 75 - 81
  • [49] A NEW THEOREM FOR THE WIENER MOLECULAR BRANCHING INDEX OF TREES WITH PERFECT MATCHINGS
    GUTMAN, I
    ROUVRAY, DH
    COMPUTERS & CHEMISTRY, 1990, 14 (01): : 29 - 32
  • [50] PERFECT MATCHINGS
    BALINSKI, ML
    SIAM REVIEW, 1970, 12 (04) : 570 - &