Nonunimodal Gorenstein sequences of higher socle degrees

被引:2
|
作者
Ahn, Jeaman [1 ]
Shin, Yong-Su [2 ]
机构
[1] Kongju Natl Univ, Dept Math Educ, 182 Shinkwan Dong, Kong Ju 314701, Chungnam, South Korea
[2] Sungshin Womens Univ, Dept Math, Seoul 136742, South Korea
基金
新加坡国家研究基金会;
关键词
Gorenstein h-vectors; Trivial extensions; Nonunimodal h-vectors; ARTINIAN-LEVEL ALGEBRAS; GENERIC INITIAL IDEALS; HILBERT-FUNCTIONS; PROPERTY; STANLEY;
D O I
10.1016/j.jalgebra.2017.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Gorenstein h-vectors (h(0), h(1)...,h(e)) of socle degree e with h(1) >= h(i) for each i, and find a necessary and sufficient condition that there exists a nonunimodal Gorenstein sequence in terms of socle degree e and codimension h(1). In particular, we prove that there exist nonunimodal Gorenstein h-vectors if and only if h(1) >= 4e - 3 for e >= 4. We also find infinitely many cases of non-Gorenstein h -vectors having the lower bound in [15]. This result generalizes the recent work [17] that the h -vector (1, 12, 11,12,1) is not a Gorenstein sequence. 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:239 / 277
页数:39
相关论文
共 50 条