Nonunimodal Gorenstein sequences of higher socle degrees

被引:2
|
作者
Ahn, Jeaman [1 ]
Shin, Yong-Su [2 ]
机构
[1] Kongju Natl Univ, Dept Math Educ, 182 Shinkwan Dong, Kong Ju 314701, Chungnam, South Korea
[2] Sungshin Womens Univ, Dept Math, Seoul 136742, South Korea
基金
新加坡国家研究基金会;
关键词
Gorenstein h-vectors; Trivial extensions; Nonunimodal h-vectors; ARTINIAN-LEVEL ALGEBRAS; GENERIC INITIAL IDEALS; HILBERT-FUNCTIONS; PROPERTY; STANLEY;
D O I
10.1016/j.jalgebra.2017.01.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Gorenstein h-vectors (h(0), h(1)...,h(e)) of socle degree e with h(1) >= h(i) for each i, and find a necessary and sufficient condition that there exists a nonunimodal Gorenstein sequence in terms of socle degree e and codimension h(1). In particular, we prove that there exist nonunimodal Gorenstein h-vectors if and only if h(1) >= 4e - 3 for e >= 4. We also find infinitely many cases of non-Gorenstein h -vectors having the lower bound in [15]. This result generalizes the recent work [17] that the h -vector (1, 12, 11,12,1) is not a Gorenstein sequence. 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:239 / 277
页数:39
相关论文
共 50 条
  • [1] GORENSTEIN SEQUENCES OF HIGH SOCLE DEGREES
    Park, Jung Pil
    Shin, Yong-Su
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (01) : 71 - 85
  • [2] On Gorenstein sequences of socle degrees 4 and 5
    Ahn, Jeaman
    Shin, Yong Su
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (05) : 854 - 862
  • [3] Gorenstein algebras with nonunimodal Betti numbers
    Boij, M
    MATHEMATICA SCANDINAVICA, 1999, 84 (02) : 161 - 164
  • [4] Resolutions of Some Gorenstein Algebras with Nonunimodal Hilbert Functions
    Coolen, Brian A.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (05) : 1595 - 1612
  • [5] A NONUNIMODAL GRADED GORENSTEIN ARTIN ALGEBRA IN CODIMENSION 5
    BERNSTEIN, D
    IARROBINO, A
    COMMUNICATIONS IN ALGEBRA, 1992, 20 (08) : 2323 - 2336
  • [6] STANLEY'S NONUNIMODAL GORENSTEIN h-VECTOR IS OPTIMAL
    Migliore, Juan
    Zanello, Fabrizio
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 1 - 9
  • [7] FACTORING OUT THE SOCLE OF A GORENSTEIN RING
    LEVIN, GL
    AVRAMOV, LL
    JOURNAL OF ALGEBRA, 1978, 55 (01) : 74 - 83
  • [8] On the Hilbert function of Gorenstein algebras of socle degree four
    Cerminara, Armando
    Gondim, Rodrigo
    Ilardi, Giovanna
    Zappala, Giuseppe
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (12)
  • [9] Quasi-socle ideals in a Gorenstein local ring
    Goto, Shiro
    Takahashi, Ryo
    Matsuoka, Naoyuki
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (05) : 969 - 980
  • [10] RINGS WHICH ARE A FACTOR OF A GORENSTEIN RING BY ITS SOCLE
    TETER, W
    INVENTIONES MATHEMATICAE, 1974, 23 (02) : 153 - 162