On maximal curves related to Chebyshev polynomials

被引:6
|
作者
Kazemifard, Ahmad [1 ]
Tafazolian, Saeed [2 ]
Torres, Fernando [2 ]
机构
[1] Shahid Chamran Univ Ahvaz, Fac Math & Comp Sci, Dept Math, Ahvaz, Iran
[2] Univ Campinas UNICAMP, Inst Math Stat & Comp Sci IMECC, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Finite field; Maximal curves; Genus; Chebyshev polynomials; FIELDS; GENUS;
D O I
10.1016/j.ffa.2018.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study maximal curves arising from Chebyshev polynomials, where in particular some results from Garcia Stichtenoth [4] are revisited and generalized. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:200 / 213
页数:14
相关论文
共 50 条
  • [31] CHEBYSHEV POLYNOMIALS
    DAWSON, CP
    ELECTRONIC ENGINEERING, 1968, 40 (481): : 164 - &
  • [32] CHEBYSHEV POLYNOMIALS
    BURTON, AJ
    DAWSON, CP
    ELECTRONIC ENGINEERING, 1968, 40 (486): : 475 - &
  • [33] Fourier Series for Functions Related to Chebyshev Polynomials of the First Kind and Lucas Polynomials
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Jang, Gwan-Woo
    MATHEMATICS, 2018, 6 (12):
  • [34] On the Chebyshev polynomials
    Boyadjiev, L
    Scherer, R
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2001, 28 (02): : 227 - 240
  • [35] CHEBYSHEV POLYNOMIALS
    WEIGHTMA.JA
    DAWSON, CP
    ELECTRONIC ENGINEERING, 1968, 40 (488): : 590 - &
  • [36] On maximal curves and linearized permutation polynomials over finite fields
    Özbudak, F
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 162 (01) : 87 - 102
  • [37] Representation by Chebyshev Polynomials for Sums of Finite Products of Chebyshev Polynomials
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Dolgy, Dmitry V.
    SYMMETRY-BASEL, 2018, 10 (12):
  • [38] Degree reduction of Bezier curves using constrained Chebyshev polynomials of the second kind
    Ahn, YJ
    ANZIAM JOURNAL, 2003, 45 : 195 - 205
  • [39] Some tridiagonal determinants related to central delannoy numbers, the chebyshev polynomials, and the fibonacci polynomials
    Qi, F.
    Čerňanová, V.
    Semenov, Y.S.
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2019, 81 (01): : 123 - 136
  • [40] SOME TRIDIAGONAL DETERMINANTS RELATED TO CENTRAL DELANNOY NUMBERS, THE CHEBYSHEV POLYNOMIALS, AND THE FIBONACCI POLYNOMIALS
    Qi, F.
    Cernanova, V
    Semenov, Y. S.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (01): : 123 - 136