VIST-a Variant-Information Search Tool for precision oncology

被引:6
|
作者
Seva, Jurica [1 ]
Wiegandt, David Luis [1 ]
Goetze, Julian [3 ]
Lamping, Mario [2 ]
Rieke, Damian [2 ,4 ,5 ]
Schaefer, Reinhold [2 ,6 ]
Jaehnichen, Patrick [1 ]
Kittner, Madeleine [1 ]
Pallarz, Steffen [1 ]
Starlinger, Johannes [1 ]
Keilholz, Ulrich [2 ]
Leser, Ulf [1 ]
机构
[1] Humboldt Univ, Knowledge Management Bioinformat, Dept Comp Sci, Rudower Chaussee 25, D-12489 Berlin, Germany
[2] Charite Comprehens Canc Ctr, Chariteplatz 1, D-10117 Berlin, Germany
[3] Univ Hosp Tubingen, Hoppe Seyler Str 3, D-72076 Tubingen, Germany
[4] Charite Unviersitatsmed Berlin, Dept Hematol & Med Oncol, Campus Benjamin Franklin, Hindenburgdamm 30, D-12203 Berlin, Germany
[5] Berlin Inst Hlth, Kapelle Ufer 2, D-10117 Berlin, Germany
[6] DKFZ Heidelberg, German Canc Consortium DKTK, Neuenheimer Feld 280, D-69120 Heidelberg, Germany
关键词
Biomedical information retrieval; Document retrieval; Personalized oncology; Document classification; Clinical relevance; Document triage; TEXT MINING APPROACH; CANCER;
D O I
10.1186/s12859-019-2958-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Diagnosis and treatment decisions in cancer increasingly depend on a detailed analysis of the mutational status of a patient's genome. This analysis relies on previously published information regarding the association of variations to disease progression and possible interventions. Clinicians to a large degree use biomedical search engines to obtain such information; however, the vast majority of scientific publications focus on basic science and have no direct clinical impact. We develop the Variant-Information Search Tool (VIST), a search engine designed for the targeted search of clinically relevant publications given an oncological mutation profile. Results VIST indexes all PubMed abstracts and content from ClinicalTrials.gov. It applies advanced text mining to identify mentions of genes, variants and drugs and uses machine learning based scoring to judge the clinical relevance of indexed abstracts. Its functionality is available through a fast and intuitive web interface. We perform several evaluations, showing that VIST's ranking is superior to that of PubMed or a pure vector space model with regard to the clinical relevance of a document's content. Conclusion Different user groups search repositories of scientific publications with different intentions. This diversity is not adequately reflected in the standard search engines, often leading to poor performance in specialized settings. We develop a search engine for the specific case of finding documents that are clinically relevant in the course of cancer treatment. We believe that the architecture of our engine, heavily relying on machine learning algorithms, can also act as a blueprint for search engines in other, equally specific domains. VIST is freely available at
引用
收藏
页数:11
相关论文
共 50 条
  • [1] VIST - a Variant-Information Search Tool for precision oncology
    Jurica Ševa
    David Luis Wiegandt
    Julian Götze
    Mario Lamping
    Damian Rieke
    Reinhold Schäfer
    Patrick Jähnichen
    Madeleine Kittner
    Steffen Pallarz
    Johannes Starlinger
    Ulrich Keilholz
    Ulf Leser
    [J]. BMC Bioinformatics, 20
  • [2] Variant information systems for precision oncology
    Johannes Starlinger
    Steffen Pallarz
    Jurica Ševa
    Damian Rieke
    Christine Sers
    Ulrich Keilholz
    Ulf Leser
    [J]. BMC Medical Informatics and Decision Making, 18
  • [3] Variant information systems for precision oncology
    Starlinger, Johannes
    Pallarz, Steffen
    Seva, Jurica
    Rieke, Damian
    Sers, Christine
    Keilholz, Ulrich
    Leser, Ulf
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2018, 18
  • [4] Variant browser: A comprehensive information retrieval tool for molecular genetics in a precision oncology setting
    Sigle, S.
    Kaufmes, K.
    Werner, P.
    Bochum, S.
    Martens, U.
    Fegeler, C.
    [J]. ONCOLOGY RESEARCH AND TREATMENT, 2021, 44 : 96 - 97
  • [5] Variant allele frequency: a decision-making tool in precision oncology?
    Bielo, Luca Boscolo
    Trapani, Dario
    Repetto, Matteo
    Crimini, Edoardo
    Valenza, Carmine
    Belli, Carmen
    Criscitiello, Carmen
    Marra, Antonio
    Subbiah, Vivek
    Curigliano, Giuseppe
    [J]. TRENDS IN CANCER, 2023, 9 (12): : 1058 - 1068
  • [6] Variant classification in precision oncology
    Leichsenring, Jonas
    Horak, Peter
    Kreutzfeldt, Simon
    Heining, Christoph
    Christopoulos, Petros
    Volckmar, Anna-Lena
    Neumann, Olaf
    Kirchner, Martina
    Ploeger, Carolin
    Budczies, Jan
    Heilig, Christoph E.
    Hutter, Barbara
    Froehlich, Martina
    Uhrig, Sebastian
    Kazdal, Daniel
    Allgaeuer, Michael
    Harms, Alexander
    Rempel, Eugen
    Lehmann, Ulrich
    Thomas, Michael
    Pfarr, Nicole
    Azoitei, Ninel
    Bonzheim, Irina
    Marienfeld, Ralf
    Moeller, Peter
    Werner, Martin
    Fend, Falko
    Boerries, Melanie
    von Bubnoff, Nikolas
    Lassmann, Silke
    Longerich, Thomas
    Bitzer, Michael
    Seufferlein, Thomas
    Malek, Nisar
    Weichert, Wilko
    Schirmacher, Peter
    Penzel, Roland
    Endris, Volker
    Brors, Benedikt
    Klauschen, Frederick
    Glimm, Hanno
    Frhoeling, Stefan
    Stenzinger, Albrecht
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2019, 145 (11) : 2996 - 3010
  • [7] Precision Medicine Search for Paediatric Oncology
    Koopman, Bevan
    Wright, Tracey
    Omer, Natacha
    McCabe, Veronica
    Zuccon, Guido
    [J]. SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 2536 - 2540
  • [8] Information as a supporting tool in oncology
    Sirgo, A
    Pérez-Lianes, MJ
    [J]. PSYCHO-ONCOLOGY, 2000, 9 (05) : S95 - S95
  • [9] PET Molecular Imaging as a Tool for Precision Oncology
    Mankoff, David A.
    Pantel, Austin
    [J]. RADIOLOGY, 2020, 296 (02) : 379 - 380
  • [10] Knowledge bases and software support for variant interpretation in precision oncology
    Borchert, Florian
    Mock, Andreas
    Tomczak, Aurelie
    Huegel, Jonas
    Alkarkoukly, Samer
    Knurr, Alexander
    Volckmar, Anna-Lena
    Stenzinger, Albrecht
    Schirmacher, Peter
    Debus, Juergen
    Jaeger, Dirk
    Longerich, Thomas
    Froehling, Stefan
    Eils, Roland
    Bougatf, Nina
    Sax, Ulrich
    Schapranow, Matthieu-P
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)