Variant information systems for precision oncology

被引:7
|
作者
Starlinger, Johannes [1 ,6 ]
Pallarz, Steffen [1 ]
Seva, Jurica [1 ]
Rieke, Damian [2 ,4 ,5 ]
Sers, Christine [3 ]
Keilholz, Ulrich [2 ]
Leser, Ulf [1 ]
机构
[1] Humboldt Univ, Dept Comp Sci, Unter Linden 6, D-10099 Berlin, Germany
[2] Charite Unvi Med Berlin, Charite Conprehens Canc Ctr, Charitepl 1, D-10117 Berlin, Germany
[3] Charite Unvi Med Berlin, Inst Pathol Mol Tumor Pathol, Charitepl 1, D-10117 Berlin, Germany
[4] Charite Unvi Med Berlin, Dept Hematol & Med Oncol, Campus Benjamin,Hindenburgdamm 30, D-12203 Berlin, Germany
[5] BIH, Kapelle Ufer 2, D-10117 Berlin, Germany
[6] Charite Unvi Med Berlin, Dept Anesthesiol & Operat Intens Care Med CCM CVK, Charitepl 1, D-10117 Berlin, Germany
关键词
Molecular cancer therapy; Variant information system; Data model; Genomic variant data integration; CLINICAL-ONCOLOGY; SEQUENCE VARIANTS; AMERICAN-SOCIETY; DATA INTEGRATION; DATABASE; RECOMMENDATIONS; KNOWLEDGEBASE; GUIDELINES; ONTOLOGY; ACCESS;
D O I
10.1186/s12911-018-0665-z
中图分类号
R-058 [];
学科分类号
摘要
Background: The decreasing cost of obtaining high-quality calls of genomic variants and the increasing availability of clinically relevant data on such variants are important drivers for personalized oncology. To allow rational genome-based decisions in diagnosis and treatment, clinicians need intuitive access to up-to-date and comprehensive variant information, encompassing, for instance, prevalence in populations and diseases, functional impact at the molecular level, associations to druggable targets, or results from clinical trials. In practice, collecting such comprehensive information on genomic variants is difficult since the underlying data is dispersed over a multitude of distributed, heterogeneous, sometimes conflicting, and quickly evolving data sources. To work efficiently, clinicians require powerful Variant Information Systems (VIS) which automatically collect and aggregate available evidences from such data sources without suppressing existing uncertainty. Methods: We address the most important cornerstones of modeling a VIS: We take from emerging community standards regarding the necessary breadth of variant information and procedures for their clinical assessment, long standing experience in implementing biomedical databases and information systems, our own clinical record of diagnosis and treatment of cancer patients based on molecular profiles, and extensive literature review to derive a set of design principles along which we develop a relational data model for variant level data. In addition, we characterize a number of public variant data sources, and describe a data integration pipeline to integrate their data into a VIS. Results: We provide a number of contributions that are fundamental to the design and implementation of a comprehensive, operational VIS. In particular, we (a) present a relational data model to accurately reflect data extracted from public databases relevant for clinical variant interpretation, (b) introduce a fault tolerant and performant integration pipeline for public variant data sources, and (c) offer recommendations regarding a number of intricate challenges encountered when integrating variant data for clincal interpretation. Conclusion: The analysis of requirements for representation of variant level data in an operational data model, together with the implementation-ready relational data model presented here, and the instructional description of methods to acquire comprehensive information to fill it, are an important step towards variant information systems for genomic medicine.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Variant information systems for precision oncology
    Johannes Starlinger
    Steffen Pallarz
    Jurica Ševa
    Damian Rieke
    Christine Sers
    Ulrich Keilholz
    Ulf Leser
    [J]. BMC Medical Informatics and Decision Making, 18
  • [2] VIST - a Variant-Information Search Tool for precision oncology
    Jurica Ševa
    David Luis Wiegandt
    Julian Götze
    Mario Lamping
    Damian Rieke
    Reinhold Schäfer
    Patrick Jähnichen
    Madeleine Kittner
    Steffen Pallarz
    Johannes Starlinger
    Ulrich Keilholz
    Ulf Leser
    [J]. BMC Bioinformatics, 20
  • [3] VIST-a Variant-Information Search Tool for precision oncology
    Seva, Jurica
    Wiegandt, David Luis
    Goetze, Julian
    Lamping, Mario
    Rieke, Damian
    Schaefer, Reinhold
    Jaehnichen, Patrick
    Kittner, Madeleine
    Pallarz, Steffen
    Starlinger, Johannes
    Keilholz, Ulrich
    Leser, Ulf
    [J]. BMC BIOINFORMATICS, 2019, 20 (01)
  • [4] Variant classification in precision oncology
    Leichsenring, Jonas
    Horak, Peter
    Kreutzfeldt, Simon
    Heining, Christoph
    Christopoulos, Petros
    Volckmar, Anna-Lena
    Neumann, Olaf
    Kirchner, Martina
    Ploeger, Carolin
    Budczies, Jan
    Heilig, Christoph E.
    Hutter, Barbara
    Froehlich, Martina
    Uhrig, Sebastian
    Kazdal, Daniel
    Allgaeuer, Michael
    Harms, Alexander
    Rempel, Eugen
    Lehmann, Ulrich
    Thomas, Michael
    Pfarr, Nicole
    Azoitei, Ninel
    Bonzheim, Irina
    Marienfeld, Ralf
    Moeller, Peter
    Werner, Martin
    Fend, Falko
    Boerries, Melanie
    von Bubnoff, Nikolas
    Lassmann, Silke
    Longerich, Thomas
    Bitzer, Michael
    Seufferlein, Thomas
    Malek, Nisar
    Weichert, Wilko
    Schirmacher, Peter
    Penzel, Roland
    Endris, Volker
    Brors, Benedikt
    Klauschen, Frederick
    Glimm, Hanno
    Frhoeling, Stefan
    Stenzinger, Albrecht
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2019, 145 (11) : 2996 - 3010
  • [5] Variant browser: A comprehensive information retrieval tool for molecular genetics in a precision oncology setting
    Sigle, S.
    Kaufmes, K.
    Werner, P.
    Bochum, S.
    Martens, U.
    Fegeler, C.
    [J]. ONCOLOGY RESEARCH AND TREATMENT, 2021, 44 : 96 - 97
  • [6] Knowledge bases and software support for variant interpretation in precision oncology
    Borchert, Florian
    Mock, Andreas
    Tomczak, Aurelie
    Huegel, Jonas
    Alkarkoukly, Samer
    Knurr, Alexander
    Volckmar, Anna-Lena
    Stenzinger, Albrecht
    Schirmacher, Peter
    Debus, Juergen
    Jaeger, Dirk
    Longerich, Thomas
    Froehling, Stefan
    Eils, Roland
    Bougatf, Nina
    Sax, Ulrich
    Schapranow, Matthieu-P
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [7] CVE: an R package for interactive variant prioritisation in precision oncology
    Mock, Andreas
    Murphy, Suzanne
    Morris, James
    Marass, Francesco
    Rosenfeld, Nitzan
    Massie, Charlie
    [J]. BMC MEDICAL GENOMICS, 2017, 10
  • [8] CVE: an R package for interactive variant prioritisation in precision oncology
    Andreas Mock
    Suzanne Murphy
    James Morris
    Francesco Marass
    Nitzan Rosenfeld
    Charlie Massie
    [J]. BMC Medical Genomics, 10
  • [9] Radiation oncology information systems
    Dahl, R
    [J]. MEDICAL PHYSICS, 2002, 29 (06) : 1364 - 1364
  • [10] Personal Cancer Genome Reporter: variant interpretation report for precision oncology
    Nakken, Sigve
    Fournous, Ghislain
    Vodak, Daniel
    Aasheim, Lars Birger
    Myklebost, Ola
    Hovig, Eivind
    [J]. BIOINFORMATICS, 2018, 34 (10) : 1778 - 1780