Tracking R of COVID-19: A new real-time estimation using the Kalman filter

被引:119
|
作者
Arroyo-Marioli, Francisco [1 ]
Bullano, Francisco [1 ]
Kucinskas, Simas [2 ]
Rondon-Moreno, Carlos [1 ]
机构
[1] Cent Bank Chile, Santiago, Chile
[2] Humboldt Univ, Berlin, Germany
来源
PLOS ONE | 2021年 / 16卷 / 01期
关键词
REPRODUCTION NUMBER; ECONOMICS;
D O I
10.1371/journal.pone.0244474
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a new method for estimating the effective reproduction number of an infectious disease (R) and apply it to track the dynamics of COVID-19. The method is based on the fact that in the SIR model, R is linearly related to the growth rate of the number of infected individuals. This time-varying growth rate is estimated using the Kalman filter from data on new cases. The method is easy to implement in standard statistical software, and it performs well even when the number of infected individuals is imperfectly measured, or the infection does not follow the SIR model. Our estimates of R for COVID-19 for 124 countries across the world are provided in an interactive , and they are used to assess the effectiveness of non-pharmaceutical interventions in a sample of 14 European countries.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Real-Time Estimation of R0 for COVID-19 Spread
    Simos, Theodore E.
    Tsitouras, Charalampos
    Kovalnogov, Vladislav N.
    Fedorov, Ruslan V.
    Generalov, Dmitry A.
    [J]. MATHEMATICS, 2021, 9 (06)
  • [2] Real-Time Lane Detection and Tracking System Using Simple Filter and Kalman Filter
    Lee, Deok-Kwon
    Shin, Ju-Seok
    Jung, Je-Han
    Park, Sang-Jun
    Oh, Se-Jin
    Lee, In-Soo
    [J]. 2017 NINTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2017), 2017, : 275 - 277
  • [3] Real-time estimation of human body postures using Kalman filter
    Takahashi, K
    Sakaguchi, T
    Ohya, J
    [J]. RO-MAN'99: 8TH IEEE INTERNATIONAL WORKSHOP ON ROBOT AND HUMAN INTERACTION, 1999, : 189 - 194
  • [4] Precise real-time orbit estimation using the unscented Kalman filter
    Lee, DJ
    Alfriend, KT
    [J]. SPACEFLIGHT MECHANICS 2003, PTS 1-3, 2003, 114 : 1853 - 1872
  • [5] Real-time vehicles tracking based on Kalman filter in an ITS
    Zou Xiaohong
    Li Dongmei
    Liu Jichuan
    [J]. INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2007: IMAGE PROCESSING, 2008, 6623
  • [6] REAL-TIME TRAJECTORY ESTIMATION OF SPACE LAUNCH VEHICLE USING EXTENDED KALMAN FILTER AND UNSCENTED KALMAN FILTER
    Baek, Jeong-Ho
    Park, Sang-Young
    Park, Eun-Seo
    Choi, Kyu-Hong
    Lim, Hyung-Chul
    Park, Jong-Uk
    [J]. JOURNAL OF ASTRONOMY AND SPACE SCIENCES, 2005, 22 (04) : 501 - 512
  • [7] Kalman filter incorporated model updating for real-time tracking
    Jang, DS
    Kim, GY
    Choi, HI
    [J]. 1996 IEEE TENCON - DIGITAL SIGNAL PROCESSING APPLICATIONS PROCEEDINGS, VOLS 1 AND 2, 1996, : 878 - 882
  • [8] Real-Time Noninvasive Intracranial State Estimation Using Unscented Kalman Filter
    Park, Chanki
    Ryu, Seung Jun
    Jeong, Bong Hyun
    Lee, Sang Pyung
    Hong, Chang-Ki
    Kim, Yong Bae
    Lee, Boreom
    [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2019, 27 (09) : 1931 - 1938
  • [9] Real-time train motion parameter estimation using an Unscented Kalman Filter
    Cunillera, Alex
    Besinovic, Nikola
    van Oort, Niels
    Goverde, Rob M. P.
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2022, 143
  • [10] Real-Time Ship Draft Measurement and Optimal Estimation Using Kalman Filter
    Dhar, S.
    Khawaja, H.
    [J]. INTERNATIONAL JOURNAL OF MULTIPHYSICS, 2023, 17 (04) : 407 - 426