TENSOR OBJECT CLASSIFICATION VIA MULTILINEAR DISCRIMINANT ANALYSIS NETWORK

被引:0
|
作者
Zeng, Rui [1 ,4 ]
Wu, Jiasong [1 ,2 ,3 ,4 ]
Senhadji, Lotfi [2 ,3 ,4 ]
Shu, Huazhong [1 ,4 ]
机构
[1] Southeast Univ, Minist Educ, LIST, Key Lab Comp Network & Informat Integrat, Nanjing 210096, Jiangsu, Peoples R China
[2] INSERM U 1099, F-35000 Rennes, France
[3] Univ Rennes 1, Lab Traitement Signal & Image, Rennes, France
[4] CRIBs, Rennes, France
关键词
Deep learning; MLDANet; PCANet; L-DANet; tensor object classification;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper proposes an multilinear discriminant analysis network (MLDANet) for the recognition of multidimensional objects, knows as tensor objects. The MLDANet is a variation of linear discriminant analysis network (LDANet) and principal component analysis network (PCANet), both of which are the recently proposed deep learning algorithms. The MLDANet consists of three parts: 1) The encoder learned by MLDA from tensor data. 2) Features maps obtained from decoder. 3) The use of binary hashing and histogram for feature pooling. A learning algorithm for MLDANet is described. Evaluations on UCF11 database indicate that the proposed MLDANet outperforms the PCANet, LDANct, MPCA+LDA, and MLDA in terms of classification for tensor objects.
引用
收藏
页码:1971 / 1975
页数:5
相关论文
共 50 条
  • [1] Multilinear Principal Component Analysis Network for Tensor Object Classification
    Wu, Jiasong
    Qiu, Shijie
    Zeng, Rui
    Kong, Youyong
    Senhadji, Lotfi
    Shu, Huazhong
    [J]. IEEE ACCESS, 2017, 5 : 3322 - 3331
  • [2] Uncorrelated Multilinear Discriminant Analysis With Regularization and Aggregation for Tensor Object Recognition
    Lu, Haiping
    Plataniotis, Konstantinos N.
    Venetsanopoulos, Anastasios N.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (01): : 103 - 123
  • [3] Multilinear Discriminant Analysis for Higher-Order Tensor Data Classification
    Li, Qun
    Schonfeld, Dan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (12) : 2524 - 2537
  • [4] Multilinear Discriminant Analysis through Tensor-Tensor Eigendecomposition
    Hoover, Randy C.
    Caudle, Kyle
    Braman, Karen
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 578 - 584
  • [5] Multimedia Classification via Tensor Linear Discriminant Analysis
    Chang, Shih-Yu
    Wu, Hsiao-Chun
    Yan, Kun
    Huang, Scott Chih-Hao
    Wu, Yiyan
    [J]. IEEE TRANSACTIONS ON BROADCASTING, 2024, : 1139 - 1152
  • [6] Orthogonal multilinear discriminant analysis and its subblock tensor analysis version
    Ben, Xianye
    Jiang, Mingyan
    Yan, Rui
    Meng, Weixiao
    Zhang, Peng
    [J]. OPTIK, 2015, 126 (03): : 361 - 367
  • [7] Quadratic Multilinear Discriminant Analysis for Tensorial Data Classification
    Minoccheri, Cristian
    Alge, Olivia
    Gryak, Jonathan
    Najarian, Kayvan
    Derksen, Harm
    [J]. ALGORITHMS, 2023, 16 (02)
  • [8] Benefits of separable, multilinear discriminant classification
    Bauckhage, Christian
    Kaester, Thomas
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 1240 - +
  • [9] Tensor-based Uncorrelated Multilinear Discriminant Analysis for Epileptic Seizure Prediction
    Zhang, Renjie
    Jiang, Xinyu
    Dai, Chenyun
    Chen, Wei
    [J]. 42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 541 - 544
  • [10] Tensor subclass discriminant analysis for radar target classification
    Tang, N.
    Gao, X. Z.
    Li, X.
    [J]. ELECTRONICS LETTERS, 2012, 48 (08) : 455 - 456