Orthogonal multilinear discriminant analysis and its subblock tensor analysis version

被引:3
|
作者
Ben, Xianye [1 ,2 ]
Jiang, Mingyan [1 ]
Yan, Rui [3 ]
Meng, Weixiao [4 ]
Zhang, Peng [1 ,2 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
[2] Nanjing Univ Sci & Technol, Key Lab Intelligent Percept & Syst High Dimens In, Minist Educ, Nanjing 210094, Jiangsu, Peoples R China
[3] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[4] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150080, Peoples R China
来源
OPTIK | 2015年 / 126卷 / 03期
基金
中国国家自然科学基金; 美国国家科学基金会; 高等学校博士学科点专项科研基金;
关键词
Orthogonal multilinear discriminant analysis (OMDA); Subblock tensor analysis; Subblock orthogonal multilinear discriminant analysis (SOMDA); Gait recognition; FACE; RECOGNITION;
D O I
10.1016/j.ijleo.2014.08.127
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper introduces an orthogonal multilinear discriminant analysis (OMDA) algorithm for gait recognition. The discriminant feature vectors of OMDA are orthogonal to each other. With the advantage of extracting a portion of local information and reducing computational complexity, the subblock tensor analysis is employed to OMDA, named subblock orthogonal multilinear discriminant analysis (SOMDA). Considering that the vectors from different subblocks have different contributions to recognition, these vectors are given different weights and synthesized into a whole vector in the recognition process. We have conducted a comparative study on gait recognition to evaluate OMDA and SOMDA in terms of classification. With the tensor vectorization methods according to both variance and class discriminability, the OMDA-based recognition algorithm indicates that it outperforms other multilinear subspace solutions such as MPCA, MPCA + LDA, GTDA, DATER and UMDA. In the subblock experiments, it indicates that SOMDA is an improvement over OMDA. (C) 2014 Elsevier GmbH. All rights reserved.
引用
收藏
页码:361 / 367
页数:7
相关论文
共 50 条
  • [1] Multilinear Discriminant Analysis through Tensor-Tensor Eigendecomposition
    Hoover, Randy C.
    Caudle, Kyle
    Braman, Karen
    [J]. 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 578 - 584
  • [2] TENSOR OBJECT CLASSIFICATION VIA MULTILINEAR DISCRIMINANT ANALYSIS NETWORK
    Zeng, Rui
    Wu, Jiasong
    Senhadji, Lotfi
    Shu, Huazhong
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1971 - 1975
  • [3] Uncorrelated Multilinear Discriminant Analysis With Regularization and Aggregation for Tensor Object Recognition
    Lu, Haiping
    Plataniotis, Konstantinos N.
    Venetsanopoulos, Anastasios N.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (01): : 103 - 123
  • [4] Multilinear Discriminant Analysis for Higher-Order Tensor Data Classification
    Li, Qun
    Schonfeld, Dan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (12) : 2524 - 2537
  • [5] Tensor-based Uncorrelated Multilinear Discriminant Analysis for Epileptic Seizure Prediction
    Zhang, Renjie
    Jiang, Xinyu
    Dai, Chenyun
    Chen, Wei
    [J]. 42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 541 - 544
  • [6] Tensor Rank One Discriminant Analysis - A convergent method for discriminative multilinear subspace selection
    Tao, Dacheng
    Li, Xuelong
    Wu, Xindong
    Maybank, Steve
    [J]. NEUROCOMPUTING, 2008, 71 (10-12) : 1866 - 1882
  • [7] Multilinear discriminant analysis for face recognition
    Yan, Shuicheng
    Xu, Dong
    Yang, Qiang
    Zhang, Lei
    Tang, Xiaoou
    Zhang, Hong-Jiang
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) : 212 - 220
  • [8] Semisupervised Sparse Multilinear Discriminant Analysis
    Kai Huang
    Li-Qing Zhang
    [J]. Journal of Computer Science and Technology, 2014, 29 : 1058 - 1071
  • [9] Semisupervised Sparse Multilinear Discriminant Analysis
    黄锴
    张丽清
    [J]. Journal of Computer Science & Technology, 2014, 29 (06) : 1058 - 1071
  • [10] TENSOR LOCALITY SENSITIVE DISCRIMINANT ANALYSIS AND ITS COMPLEXITY
    Wei, Yantao
    Li, Hong
    Li, Luoqing
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2009, 7 (06) : 865 - 880