Deep Model-Based 6D Pose Refinement in RGB

被引:90
|
作者
Manhardt, Fabian [1 ]
Kehl, Wadim [2 ]
Navab, Nassir [1 ]
Tombari, Federico [1 ]
机构
[1] Tech Univ Munich, D-85748 Garching, Germany
[2] Toyota Res Inst, Los Altos, CA 94022 USA
来源
关键词
Pose estimation; Pose refinement; Tracking; TIME VISUAL TRACKING; OBJECT TRACKING; SEGMENTATION;
D O I
10.1007/978-3-030-01264-9_49
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel approach for model-based 6D pose refinement in color data. Building on the established idea of contour-based pose tracking, we teach a deep neural network to predict a translational and rotational update. At the core, we propose a new visual loss that drives the pose update by aligning object contours, thus avoiding the definition of any explicit appearance model. In contrast to previous work our method is correspondence-free, segmentation-free, can handle occlusion and is agnostic to geometrical symmetry as well as visual ambiguities. Additionally, we observe a strong robustness towards rough initialization. The approach can run in real-time and produces pose accuracies that come close to 3D ICP without the need for depth data. Furthermore, our networks are trained from purely synthetic data and will be published together with the refinement code at http://campar.in.tum.de/Main/FabianManhardt to ensure reproducibility.
引用
收藏
页码:833 / 849
页数:17
相关论文
共 50 条
  • [1] Model-Based Underwater 6D Pose Estimation From RGB
    Sapienza, Davide
    Govi, Elena
    Aldhaheri, Sara
    Bertogna, Marko
    Roura, Eloy
    Pairet, Eric
    Verucchi, Micaela
    Ardon, Paola
    [J]. IEEE Robotics and Automation Letters, 2023, 8 (11) : 7535 - 7542
  • [2] 3D Model-Based 6D Object Pose Tracking on RGB Images
    Majcher, Mateusz
    Kwolek, Bogdan
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2020), PT I, 2020, 12033 : 271 - 282
  • [3] 3D Model-based 6D Object Pose Tracking on RGB Images using Particle Filtering and Heuristic Optimization
    Majcher, Mateusz
    Kwolek, Bogdan
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 690 - 697
  • [4] SilhoNet: An RGB Method for 6D Object Pose Estimation
    Billings, Gideon
    Johnson-Roberson, Matthew
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 3727 - 3734
  • [5] RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering
    Iwase, Shun
    Liu, Xingyu
    Khirodkar, Rawal
    Yokota, Rio
    Kitani, Kris M.
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3283 - 3292
  • [6] A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation
    Trabelsi, Ameni
    Chaabane, Mohamed
    Blanchard, Nathaniel
    Beveridge, Ross
    [J]. 2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2381 - 2390
  • [7] 6D Robotic Assembly Based on RGB-only Object Pose Estimation
    Fu, Bowen
    Leong, Sek Kun
    Lian, Xiaocong
    Ji, Xiangyang
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 4736 - 4742
  • [8] Fast 6D object pose refinement in depth images
    Zhang, Haoruo
    Cao, Qixin
    [J]. APPLIED INTELLIGENCE, 2019, 49 (06) : 2287 - 2300
  • [9] Fast 6D object pose refinement in depth images
    Haoruo Zhang
    Qixin Cao
    [J]. Applied Intelligence, 2019, 49 : 2287 - 2300
  • [10] 6D Gripper Pose Estimation from RGB-D Image
    Tang, Qirong
    Hu, Xue
    Chu, Zhugang
    Wu, Shun
    [J]. COMPUTER VISION SYSTEMS (ICVS 2019), 2019, 11754 : 120 - 125