Electrochemically Gated Long-Distance Charge Transport in Photosystem I

被引:9
|
作者
Lopez-Martinez, Montse [1 ,2 ,3 ,9 ]
Lopez-Ortiz, Manuel [2 ,3 ]
Antinori, Maria Elena [2 ,11 ]
Wientjes, Emilie [4 ]
Nin-Hill, Alba [5 ,6 ]
Rovira, Carme [5 ,6 ,7 ]
Croce, Roberta [8 ]
Diez-Perez, Ismael [1 ,10 ]
Gorostiza, Pau [2 ,3 ,7 ]
机构
[1] Univ Barcelona, Dept Mat Sci & Phys Chem, Marti i Franques 1, E-08028 Barcelona, Spain
[2] Barcelona Inst Sci & Technol, Inst Bioengn Catalonia IBEC, Baldiri Reixac 10-12, Barcelona 08028, Spain
[3] Biomat & Nanomed CIBER BBN, Network Biomed Res Ctr Bioengn, Madrid 28029, Spain
[4] Wageningen Univ, Lab Biophys, NL-6700 ET Wageningen, Netherlands
[5] Univ Barcelona, Inorgan & Organ Chem Dept, Marti i Franques 1, E-08028 Barcelona, Spain
[6] Univ Barcelona, Inst Theoret & Computat Chem IQTCUB, Marti i Franques 1, E-08028 Barcelona, Spain
[7] Catalan Inst Res & Adv Studies ICREA, Barcelona 08010, Spain
[8] Vrije Univ Amsterdam, Fac Sci, Dept Phys & Astron, Biophys Photosynth, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
[9] TU Wien, Inst Angew Phys, Vienna, Austria
[10] Kings Coll London, Fac Nat & Math Sci, Dept Chem, London, England
[11] Ist Italiano Tecnol, Smart Mat, Nanophys, Genoa, Italy
关键词
current decay; electrochemical gating; electron transfer; photosynthesis; scanning tunneling microscopy; SCANNING-TUNNELING-MICROSCOPY; ELECTRON-TRANSFER; REDOX PROTEINS; COMPLEXES; PLASTOCYANIN; PATHWAYS;
D O I
10.1002/anie.201904374
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The transport of electrons along photosynthetic and respiratory chains involves a series of enzymatic reactions that are coupled through redox mediators, including proteins and small molecules. The use of native and synthetic redox probes is key to understanding charge transport mechanisms and to the design of bioelectronic sensors and solar energy conversion devices. However, redox probes have limited tunability to exchange charge at the desired electrochemical potentials (energy levels) and at different protein sites. Herein, we take advantage of electrochemical scanning tunneling microscopy (ECSTM) to control the Fermi level and nanometric position of the ECSTM probe in order to study electron transport in individual photosystem I (PSI) complexes. Current-distance measurements at different potentiostatic conditions indicate that PSI supports long-distance transport that is electrochemically gated near the redox potential of P700, with current extending farther under hole injection conditions.
引用
收藏
页码:13280 / 13284
页数:5
相关论文
共 50 条
  • [1] DNA as a supramolecule for long-distance charge transport
    Giese, B
    Meggers, E
    Wessely, S
    Spormann, M
    Biland, A
    [J]. CHIMIA, 2000, 54 (10) : 547 - 551
  • [2] The Protein Matrix of Plastocyanin Supports Long-Distance Charge Transport with Photosystem I and the Copper Ion Regulates Its Spatial Span and Conductance
    Lopez-Ortiz, Manuel
    Zamora, Ricardo A.
    Giannotti, Marina I.
    Gorostiza, Pau
    [J]. ACS NANO, 2023, 17 (20) : 20334 - 20344
  • [3] LONG-DISTANCE TRANSPORT
    ZIMMERMANN, MH
    [J]. PLANT PHYSIOLOGY, 1974, 54 (04) : 472 - 479
  • [4] On the long-distance charge transport in DNA-like macromolecules
    Chevizovich, D.
    Chizhov, A., V
    Ivic, Z.
    Reshetnyak, A. A.
    [J]. NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2021, 12 (01): : 32 - 41
  • [5] The influence of mismatches on long-distance charge transport through DNA
    Giese, B
    Wessely, S
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2000, 39 (19) : 3490 - +
  • [6] LONG-DISTANCE PERINATAL TRANSPORT
    YODER, BA
    [J]. AMERICAN JOURNAL OF PERINATOLOGY, 1992, 9 (02) : 75 - 79
  • [7] Significance of Long-Distance Transport
    Herschbach, Cornelia
    [J]. MOLECULAR PHYSIOLOGY AND ECOPHYSIOLOGY OF SULFUR, 2015, : 21 - 35
  • [8] Long-distance charge transport through DNA. An extended hopping model
    Giese, B
    Spichty, M
    Wessely, S
    [J]. PURE AND APPLIED CHEMISTRY, 2001, 73 (03) : 449 - 453
  • [9] Long-distance passenger transport market
    Beria, Paolo
    [J]. RESEARCH IN TRANSPORTATION ECONOMICS, 2018, 72 : 1 - 2
  • [10] Long-distance transport of pollen into the Arctic
    Ian D. Campbell
    Karen McDonald
    Michael D. Flannigan
    Joanni Kringayark
    [J]. Nature, 1999, 399 : 29 - 30