A general non-linear multilevel structural equation mixture model

被引:0
|
作者
Kelava, Augustin [1 ]
Brandt, Holger [1 ]
机构
[1] Univ Tubingen, Dept Educ, Ctr Educ Sci & Psychol, D-72072 Tubingen, Germany
来源
FRONTIERS IN PSYCHOLOGY | 2014年 / 5卷
关键词
latent variables; semiparametric; non-linear; mixture distribution; structural equation modeling; multilevel; MAXIMUM-LIKELIHOOD-ESTIMATION; LATENT VARIABLE MODELS; SEMIPARAMETRIC APPROACH; BAYESIAN-ANALYSIS; FINITE MIXTURES; HYPOTHESIS; ESTIMATORS; REGRESSION; INDICATOR; ERROR;
D O I
10.3389/fpsyg.2014.00748
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
In the past 2 decades latent variable modeling has become a standard tool in the social sciences. In the same time period, traditional linear structural equation models have been extended to include non-linear interaction and quadratic effects (e.g., Klein and IMeosbrugger, 2000), and multilevel modeling (Rabe-Hesketh et al., 2004). We present a general non-linear multilevel structural equation mixture model (GNM-SEMM) that combines recent semiparametric non-linear structural equation models (Kelava and Nagengast, 2012; Kelava et al., 2014) with multilevel structural equation mixture models (Muthen and Aspatotthav, 2009) for clustered and non-normally distributed data. The proposed approach allows for semiparametric relationships at the within and at the between levels. We present examples from the educational science to illustrate different submodels from the general framework.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Linear versus non-linear supersymmetry, in general
    Sergio Ferrara
    Renata Kallosh
    Antoine Van Proeyen
    Timm Wrase
    [J]. Journal of High Energy Physics, 2016
  • [32] Linear versus non-linear supersymmetry, in general
    Ferrara, Sergio
    Kallosh, Renata
    Van Proeyen, Antoine
    Wrase, Timm
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [33] A Non-Linear Structural Probe
    White, Jennifer C.
    Pimentel, Tiago
    Saphra, Naomi
    Cotterell, Ryan
    [J]. 2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 132 - 138
  • [34] THE GENERAL-SOLUTION OF A NON-LINEAR INTEGRAL-EQUATION OF CONVOLUTION TYPE
    SCHNEIDER, WR
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1982, 33 (01): : 140 - 142
  • [35] ON CONVERGENCE OF ROE SCHEME FOR THE GENERAL NON-LINEAR SCALAR WAVE-EQUATION
    SWEBY, PK
    BAINES, MJ
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 56 (01) : 135 - 148
  • [36] Multilevel Privacy Preserving by Linear and Non-Linear Data Distortion
    Balu, Sangore Rohidas
    Lade, Shrikant
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2015, 15 (10): : 36 - 42
  • [37] Causal Discovery with General Non-Linear Relationships Using Non-Linear ICA
    Monti, Ricardo Pio
    Zhang, Kun
    Hyvarinen, Aapo
    [J]. 35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), 2020, 115 : 186 - 195
  • [38] Dynamics of a non-linear difference equation
    Mazrooei-Sebdani, Reza
    Dehghan, Mehdi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 250 - 261
  • [39] On a non-linear oscillator equation factorization
    Lokshin, AA
    Sagomonyan, YA
    Enikeeva, LG
    [J]. VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1996, (01): : 90 - 92
  • [40] A NON-LINEAR INTEGRAL-EQUATION
    NUSSBAUM, RD
    BAXTER, N
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1981, 5 (12) : 1285 - 1307