A general non-linear multilevel structural equation mixture model

被引:0
|
作者
Kelava, Augustin [1 ]
Brandt, Holger [1 ]
机构
[1] Univ Tubingen, Dept Educ, Ctr Educ Sci & Psychol, D-72072 Tubingen, Germany
来源
FRONTIERS IN PSYCHOLOGY | 2014年 / 5卷
关键词
latent variables; semiparametric; non-linear; mixture distribution; structural equation modeling; multilevel; MAXIMUM-LIKELIHOOD-ESTIMATION; LATENT VARIABLE MODELS; SEMIPARAMETRIC APPROACH; BAYESIAN-ANALYSIS; FINITE MIXTURES; HYPOTHESIS; ESTIMATORS; REGRESSION; INDICATOR; ERROR;
D O I
10.3389/fpsyg.2014.00748
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
In the past 2 decades latent variable modeling has become a standard tool in the social sciences. In the same time period, traditional linear structural equation models have been extended to include non-linear interaction and quadratic effects (e.g., Klein and IMeosbrugger, 2000), and multilevel modeling (Rabe-Hesketh et al., 2004). We present a general non-linear multilevel structural equation mixture model (GNM-SEMM) that combines recent semiparametric non-linear structural equation models (Kelava and Nagengast, 2012; Kelava et al., 2014) with multilevel structural equation mixture models (Muthen and Aspatotthav, 2009) for clustered and non-normally distributed data. The proposed approach allows for semiparametric relationships at the within and at the between levels. We present examples from the educational science to illustrate different submodels from the general framework.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Bayesian analysis for finite mixture in non-recursive non-linear structural equation models
    Li, Yong
    Wang, Hai-Zhong
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2010, 63 (02): : 361 - 377
  • [2] Unification of the general non-linear sigma model and the virasoro master equation
    de Boer, J
    Halpern, MB
    [J]. NEW DEVELOPMENTS IN QUANTUM FIELD THEORY, 1998, 366 : 79 - 95
  • [3] A MODEL OF DISPERSIVE NON-LINEAR EQUATION
    YAJIMA, N
    OUTI, A
    TANIUTI, T
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1966, 35 (06): : 1142 - &
  • [4] STEMM: A general finite mixture structural equation model
    Jedidi, K
    Jagpal, HS
    DeSarbo, WS
    [J]. JOURNAL OF CLASSIFICATION, 1997, 14 (01) : 23 - 50
  • [5] STEMM: A General Finite Mixture Structural Equation Model
    Kamel Jedidi
    Harsharanjeet S. Jagpal
    Wayne S. DeSarbo
    [J]. Journal of Classification, 1997, 14 : 23 - 50
  • [6] The General Linear Model as Structural Equation Modeling
    Graham, James M.
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2008, 33 (04) : 485 - 506
  • [7] A Lax equation for the non-linear sigma model
    Brunelli, JC
    Constandache, A
    Das, A
    [J]. PHYSICS LETTERS B, 2002, 546 (1-2) : 167 - 176
  • [8] THE GENERAL NON-LINEAR AR(1) MODEL
    MOKKADEM, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (19): : 889 - 892
  • [9] Non-Linear Model Predictive Control for Modular Multilevel Converters
    Hamayoon, Saad
    Hovd, Morten
    Suul, Jon Are
    [J]. 2022 INTERNATIONAL POWER ELECTRONICS CONFERENCE (IPEC-HIMEJI 2022- ECCE ASIA), 2022, : 562 - 568
  • [10] FURTHER ELABORATION OF DATA WITH NON-LINEAR MODEL BY MULTILEVEL COMPUTATION
    RAGOT, J
    KRZAKALA, G
    AUBRUN, M
    [J]. NOUVEL AUTOMATISME, 1979, 24 (3-4): : 49 - 56