Well-posedness and Scattering for the Critical Fractional Schrodinger Equations

被引:0
|
作者
Hwang, Gyeongha [1 ]
机构
[1] Yeungnam Univ, Dept Math, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2020年 / 63卷 / 02期
关键词
Fractional Schrodinger equation; Power type nonlinearity; Well-posedness; U-p; V-p space; Multilinear estimates;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the critical fractional Schrodinger equation with the power type nonlinearity. Hong-Sire [13] proved the local well-posedness, small data global well-posedness and scattering in cases of P > 5 when d = 1 and P > 3 when d >= 2. In this paper, we extend the results to the cases of P = 5 when d = 1 and P = 3 when d >= 2 by using U-p, V-p spaces introduced by Koch-Tataru [16, 17].
引用
收藏
页码:231 / 245
页数:15
相关论文
共 50 条
  • [21] Well-Posedness of a Class of Fractional Langevin Equations
    Zhou, Mi
    Zhang, Lu
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [22] Mild well-posedness of equations with fractional derivative
    Bu, Shangquan
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (2-3) : 202 - 209
  • [23] On well-posedness for nonlinear Schrodinger equations with power nonlinearity in fractional order Sobolev spaces
    Uchizono, Harunori
    Wada, Takeshi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 56 - 62
  • [24] Well-posedness and local smoothing of solutions of Schrodinger, equations
    Ionescu, AD
    Kenig, CE
    [J]. MATHEMATICAL RESEARCH LETTERS, 2005, 12 (2-3) : 193 - 205
  • [25] Global Well-Posedness and Scattering for Derivative Schrodinger Equation
    Wang, Yuzhao
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (10) : 1694 - 1722
  • [26] Well-Posedness and Stability for Schrodinger Equations with Infinite Memory
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Guesmia, A.
    Sepulveda, M.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 85 (02):
  • [27] On the well-posedness for stochastic Schrodinger equations with quadratic potential
    Fang, Daoyuan
    Zhang, Linzi
    Zhang, Ting
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (05) : 711 - 728
  • [28] Well-posedness of dispersion managed nonlinear Schrodinger equations
    Choi, Mi-Ran
    Hundertmark, Dirk
    Lee, Young -Ran
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (01)
  • [29] Well-posedness for the Chern-Simons-Schrodinger equations
    Fan, Jishan
    Ozawa, Tohru
    [J]. AIMS MATHEMATICS, 2022, 7 (09): : 17349 - 17356
  • [30] Local well-posedness of a critical inhomogeneous Schrodinger equation
    Saanouni, Tarek
    Peng, Congming
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 10256 - 10273