On the Amin Method and Its Applications in the Real Options with Interventions under Jump-Diffusion Processes

被引:0
|
作者
Jiang Xianfeng [1 ]
机构
[1] Dongbei Univ Finance & Econ, Res Ctr Appl Finance, Dalian 116025, Liaoning, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper gives proofs for the monotonicity and convexity of the Amin method to value American option under jump-diffusion processes. We also find that the Amin method is monotone for the free boundary. These properties make the Amin method appropriate for analysis in the real options with intervention, which may be biased for other numerical methods because of lack of monotonicity and convexity. The corresponding numerical results show that the market power is important for the investor in making the decision of intervention.
引用
收藏
页码:56 / 61
页数:6
相关论文
共 50 条
  • [41] Pricing defaultable bonds under Hawkes jump-diffusion processes
    Chen, Li
    Ma, Yong
    Xiao, Weilin
    FINANCE RESEARCH LETTERS, 2022, 47
  • [42] Optimal Dividend Payouts Under Jump-Diffusion Risk Processes
    Zou, Jiezhong
    Zhang, Zhenzhong
    Zhang, Jiankang
    STOCHASTIC MODELS, 2009, 25 (02) : 332 - 347
  • [43] Occupation Times of Jump-Diffusion Processes with Double Exponential Jumps and the Pricing of Options
    Cai, Ning
    Chen, Nan
    Wan, Xiangwei
    MATHEMATICS OF OPERATIONS RESEARCH, 2010, 35 (02) : 412 - 437
  • [44] Convergence of the binomial tree method for American options in a jump-diffusion model
    Qian, XS
    Xu, CL
    Jiang, LS
    Bian, BJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (05) : 1899 - 1913
  • [45] Convergence of the binomial tree method for Asian options in jump-diffusion models
    Kim, Kwang Ik
    Qian, Xiao-song
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (01) : 10 - 23
  • [46] Pricing Cliquet options in jump-diffusion models
    Yan, HF
    Yang, JQ
    Liu, LM
    STOCHASTIC MODELS, 2005, 21 (04) : 875 - 884
  • [47] Doubly perturbed jump-diffusion processes
    Luo, Jiaowan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 147 - 151
  • [48] A MARTINGALE METHOD FOR THE CONVERGENCE OF A SEQUENCE OF PROCESSES TO A JUMP-DIFFUSION PROCESS
    KUSHNER, HJ
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 53 (02): : 207 - 219
  • [49] Jump-diffusion processes in tracking/recognition
    Sworder, DD
    Boyd, JE
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (01) : 235 - 239
  • [50] Jump-diffusion processes in random environments
    Jakubowski, Jacek
    Nieweglowski, Mariusz
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (07) : 2671 - 2703