EXISTENCE, NONEXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR PARAMETRIC NONLINEAR ELLIPTIC EQUATIONS

被引:0
|
作者
Iannizzotto, Antonio [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
P-LAPLACIAN EQUATIONS; AMBROSETTI; CONCAVE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parametric nonlinear elliptic equation driven by the Dirichlet p-Laplacian. We study the existence, nonexistence and multiplicity of positive solutions as the parameter lambda varies in R-0(+) of and the potential exhibits a p-superlinear growth, without satisfying the usual in such cases Ambrosetti-Rabinowitz condition. We prove a bifurcation-type result when the reaction has (p - 1)-sublinear terms near zero (problem with concave and convex nonlinearities). We show that a similar bifurcation-type result is also true, if near zero the right hand side is (p - 1)-linear.
引用
收藏
页码:179 / 202
页数:24
相关论文
共 50 条