New imputation methods for missing data using quantiles

被引:31
|
作者
Munoz, J. F. [1 ]
Rueda, M. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Estadist & IO, E-18071 Granada, Spain
关键词
Auxiliary information; Imputation method; Inclusion probabilities; Variance; Response mechanism; Quantile; VARIANCE-ESTIMATION; EM ALGORITHM; JACKKNIFE;
D O I
10.1016/j.cam.2009.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of missing values commonly arises in data sets, and imputation is usually employed to compensate for non-response. We propose a novel imputation method based on quantiles, which can be implemented with or without the presence of auxiliary information. The proposed method is extended to unequal sampling designs and non-uniform response mechanisms. Iterative algorithms to compute the proposed imputation methods are presented. Monte Carlo simulations are conducted to assess the performance of the proposed imputation methods with respect to alternative imputation methods. Simulation results indicate that the proposed methods perform competitively in terms of relative bias and relative root mean square error. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:305 / 317
页数:13
相关论文
共 50 条
  • [41] Missing data incremental imputation through tree based methods
    Conversano, C
    Cappelli, C
    [J]. COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 455 - 460
  • [42] Imputation Methods for Handling Missing Dietary Supplement Dosage Data
    Leung, June
    Dwyer, Johanna
    Hibberd, Patricia
    Jacques, Paul
    Rand, William
    [J]. JOURNAL OF RENAL NUTRITION, 2010, 20 (05) : 342 - 347
  • [43] Optimization methods for the imputation of missing values in Educational Institutions Data
    Aureli, D.
    Bruni, R.
    Daraio, C.
    [J]. METHODSX, 2021, 8
  • [44] From Predictive Methods to Missing Data Imputation: An Optimization Approach
    Bertsimas, Dimitris
    Pawlowski, Colin
    Zhuo, Ying Daisy
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [45] An evaluation of methods for imputation of missing trace element data in groundwaters
    Dickson, Bruce L.
    Giblin, Angela M.
    [J]. GEOCHEMISTRY-EXPLORATION ENVIRONMENT ANALYSIS, 2007, 7 : 173 - 178
  • [46] Comparison of imputation methods for missing production data of dairy cattle
    You, J.
    Ellis, J. L.
    Adams, S.
    Sahar, M.
    Jacobs, M.
    Tulpan, D.
    [J]. ANIMAL, 2023, 17
  • [47] Comparison of missing value imputation methods for crop yield data
    Lokupitiya, Ravindra S.
    Lokupitiya, Erandathie
    Paustian, Keith
    [J]. ENVIRONMETRICS, 2006, 17 (04) : 339 - 349
  • [48] A comparison of multiple imputation methods for missing data in longitudinal studies
    Huque, Md Hamidul
    Carlin, John B.
    Simpson, Julie A.
    Lee, Katherine J.
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [49] A comparison of multiple imputation methods for missing data in longitudinal studies
    Md Hamidul Huque
    John B. Carlin
    Julie A. Simpson
    Katherine J. Lee
    [J]. BMC Medical Research Methodology, 18
  • [50] Applications of Missing Data Imputation Methods in Wastewater Treatment Plants
    Chaoui, Abdellah
    Rebija, Kaoutar
    Chkaiti, Kaoutar
    Laaouan, Mohammed
    Bourziza, Rqia
    Sebari, Karima
    Elkhoumsi, Wafae
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (10) : 461 - 469